2,117
Views
22
CrossRef citations to date
0
Altmetric
Original Articles

Hybridization of graphene-reinforced two polymer nanocomposites

, &
Pages 179-201 | Received 03 Sep 2016, Accepted 13 Sep 2016, Published online: 14 Oct 2016

References

  • P. Ajayan, L. Schadler, P. Braun, and T. Russell, Library-nanocomposite science and technology, MRS Bull. 29 (2004), pp. 975.
  • T. Pinnavaia and G. Beall, Polymer-Clay Nanocomposites, John Wiley & Sons, New York, NY, 2000.
  • V.B. Mohan, D. Liu, K. Jayaraman, M. Stamm, and D. Bhattacharyya, Improvements in electronic structure and properties of graphene derivatives, Adv. Mater. Lett. 7 (2016), pp. 421–429. doi:10.5185/amlett.2016.6123
  • X. An, H. Ma, B. Liu, and J. Wang, Graphene oxide reinforced polylactic acid/polyurethane antibacterial composites, J. Nanomater. (2013), article number 18.
  • J.R. Potts, D.R. Dreyer, C.W. Bielawski, and R.S. Ruoff, Graphene-based polymer nanocomposites, Polymer 52 (2011), pp. 5–25. doi:10.1016/j.polymer.2010.11.042
  • H.-B. Zhang, W.-G. Zheng, Q. Yan, Y. Yang, J.-W. Wang, Z.-H. Lu, G.-Y. Ji, and Z.-Z. Yu, Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding, Polymer 51 (2010), pp. 1191–1196. doi:10.1016/j.polymer.2010.01.027
  • T.K. Das and S. Prusty, Graphene-based polymer composites and their applications, Polym.-Plast. Technol. 52 (2013), pp. 319–331. doi:10.1080/03602559.2012.751410
  • W. Choi and J.-W. Lee, Graphene Synthesis and Applications, CRC Press, Boca Raton, FL, 2012.
  • V.B. Mohan, R. Brown, K. Jayaraman, and D. Bhattacharyya, Characterisation of reduced graphene oxide: effects of reduction variables on electrical conductivity, Mater. Sci. Eng. B 193 (2015), pp. 49–60. doi:10.1016/j.mseb.2014.11.002
  • R.J. Young, I.A. Kinloch, L. Gong, and K.S. Novoselov, The mechanics of graphene nanocomposites: a review, Compos. Sci. Technol. 72 (2012), pp. 1459–1476. doi:10.1016/j.compscitech.2012.05.005
  • H. Tang, G.J. Ehlert, Y. Lin, and H.A. Sodano, Highly efficient synthesis of graphene nanocomposites, Nano Lett. 12 (2011), pp. 84–90. doi:10.1021/nl203023k
  • H. Kim, Y. Miura, and C.W. Macosko, Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity, Chem. Mater. 22 (2010), pp. 3441–3450. doi:10.1021/cm100477v
  • W. Qin, F. Vautard, L.T. Drzal, and J. Yu, Mechanical and electrical properties of carbon fiber composites with incorporation of graphene nanoplatelets at the fiber–matrix interphase, Compos. Part B 69 (2015), pp. 335–341. doi:10.1016/j.compositesb.2014.10.014
  • A. Almajid, L. Sorochynska, K. Friedrich, and B. Wetzel, Effects of graphene and CNT on mechanical, thermal, electrical and corrosion properties of vinylester based nanocomposites, Plast. Rub. Comp. 44 (2015), pp. 50–62. doi:10.1179/1743289814Y.0000000117
  • H. Aguilar-Bolados, M.A. Lopez-Manchado, J. Brasero, F. Avilés, and M. Yazdani-Pedram, Effect of the morphology of thermally reduced graphite oxide on the mechanical and electrical properties of natural rubber nanocomposites, Compos. Part B 87 (2016), pp. 350–356. doi:10.1016/j.compositesb.2015.08.079
  • M. Saafi, L. Tang, J. Fung, M. Rahman, and J. Liggat, Enhanced properties of graphene/fly ash geopolymeric composite cement, Cem. Concr. Res. 67 (2015), pp. 292–299. doi:10.1016/j.cemconres.2014.08.011
  • T. Kuilla, S. Bhadra, D. Yao, N.H. Kim, S. Bose, and J.H. Lee, Recent advances in graphene based polymer composites, Prog. Polym. Sci. 75 (2010), pp. 1350–1375. doi:10.1016/j.progpolymsci.2010.07.005
  • N.D. Luong, N. Pahimanolis, U. Hippi, J.T. Korhonen, J. Ruokolainen, L.-S. Johansson, J.-D. Nam, and J. Seppälä, Graphene/cellulose nanocomposite paper with high electrical and mechanical performances, J. Mater. Chem. 21 (2011), pp. 13991–13998. doi:10.1039/c1jm12134k
  • S. Bose, T. Kuila, M.E. Uddin, N.H. Kim, A.K.T. Lau, and J.H. Lee, In-situ synthesis and characterization of electrically conductive polypyrrole/graphene nanocomposites, Polymer 51 (2010), pp. 5921–5928. doi:10.1016/j.polymer.2010.10.014
  • D. Galpaya, M. Wang, M. Liu, N. Motta, E. Waclawik, and C. Yan, Recent advances in fabrication and characterization of graphene-polymer nanocomposites, Graphene 1 (2012), pp. 30–49. doi:10.4236/graphene.2012.12005
  • M. Hernández, M. Bernal, R. Verdejo, T.A. Ezquerra, and M.A. López-Manchado, Overall performance of natural rubber/graphene nanocomposites, Compos. Sci. Technol. 73 (2012), pp. 40–46. doi:10.1016/j.compscitech.2012.08.012
  • P. Kun, O. Tapasztó, F. Wéber, and C. Balázsi, Determination of structural and mechanical properties of multilayer graphene added silicon nitride-based composites, Ceram. Int. 38 (2012), pp. 211–216. doi:10.1016/j.ceramint.2011.06.051
  • C. Wu, X. Huang, G. Wang, L. Lv, G. Chen, G. Li, and P. Jiang, Highly conductive nanocomposites with three-dimensional, compactly interconnected graphene networks via a self-assembly process, Adv. Funct. Mater. 23 (2013), pp. 506–513. doi:10.1002/adfm.201201231
  • H. Kim, A.A. Abdala, and C.W. Macosko, Graphene/polymer nanocomposites, Macromolecules 43 (2010), pp. 6515–6530. doi:10.1021/ma100572e
  • S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, and R.S. Ruoff, Graphene-based composite materials, Nature 442 (2006), pp. 282–286. doi:10.1038/nature04969
  • P. Steurer, R. Wissert, R. Thomann, and R. Mülhaupt, Functionalized graphenes and thermoplastic nanocomposites based upon expanded graphite oxide, Macromol. Rapid Commun. 30 (2009), pp. 316–327. doi:10.1002/marc.200800754
  • S. Ansari and E.P. Giannelis, Functionalized graphene sheet-poly(vinylidene fluoride) conductive nanocomposites, J. Polym. Sci. Part B: Polym. Phys. 47 (2009), pp. 888–897. doi:10.1002/polb.21695
  • R. Taipalus, T. Harmia, M.Q. Zhang, and K. Friedrich, The electrical conductivity of carbon-fibre-reinforced polypropylene/polyaniline complex-blends: experimental characterisation and modelling, Compos. Sci. Technol. 61 (2001), pp. 801–814. doi:10.1016/S0266-3538(00)00183-4
  • K. Hyunwoo, A.A. Ahmed, and W.M. Christopher, Graphene/Polymer Nanocomposites. Graphite, Graphene, and Their Polymer Nanocomposites, CRC Press, Boca Raton, FL, 2012, pp. 513–556.
  • C. Sellam, Graphene based nanocomposites for mechanical reinforcement, Ph.D. diss., Queen Mary University of London; 2015.
  • M.F. Ashby, Engineering Materials 1: An Introduction to Properties, Applications, and Design, 4th ed., Butterworth-Heinemann, Boston, MA, 2012.
  • M. Martin-Gallego, M.M. Bernal, M. Hernandez, R. Verdejo, and M.A. Lopez-Manchado, Comparison of filler percolation and mechanical properties in graphene and carbon nanotubes filled epoxy nanocomposites, Eur. Polym. J. 49 (2013), pp. 1347–1353. doi:10.1016/j.eurpolymj.2013.02.033
  • M.A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z.-Z. Yu, and N. Koratkar, Enhanced mechanical properties of nanocomposites at low graphene content, ACS Nano 3 (2009), pp. 3884–3890. doi:10.1021/nn9010472
  • L.-C. Tang, Y.-J. Wan, D. Yan, Y.-B. Pei, L. Zhao, Y.-B. Li, L.-B. Wu, J.-X. Jiang, and G.-Q. Lai, The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites, Carbon 60 (2013), pp. 16–27. doi:10.1016/j.carbon.2013.03.050
  • A. Satti, P. Larpent, and Y. Gun’ko, Improvement of mechanical properties of graphene oxide/poly(allylamine) composites by chemical crosslinking, Carbon 48 (2010), pp. 3376–3381. doi:10.1016/j.carbon.2010.05.030
  • X. Wang, H. Yang, L. Song, Y. Hu, W. Xing, and H. Lu, Morphology, mechanical and thermal properties of graphene-reinforced poly(butylene succinate) nanocomposites, Compos. Sci. Technol. 72 (2011), pp. 1–6. doi:10.1016/j.compscitech.2011.05.007
  • A.V. Raghu, Y.R. Lee, H.M. Jeong, and C.M. Shin, Preparation and physical properties of waterborne polyurethane/functionalized graphene sheet nanocomposites, Macromol. Chem. Phys. 209 (2008), pp. 2487–2493. doi:10.1002/macp.200800395
  • P. Song, Z. Cao, Y. Cai, L. Zhao, Z. Fang, and S. Fu, Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties, Polymer 52 (2011), pp. 4001–4010. doi:10.1016/j.polymer.2011.06.045
  • M. El Achaby, F.-E. Arrakhiz, S. Vaudreuil, A. El Kacem Qaiss, M. Bousmina, and O. Fassi-Fehri, Mechanical, thermal, and rheological properties of grapheme-based polypropylene nanocomposites prepared by melt mixing, Polym. Compos. 33 (2012), pp. 733–744. doi:10.1002/pc.22198
  • M. Fang, K. Wang, H. Lu, Y. Yang, and S. Nutt, Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites, J. Mater. Chem. 19 (2009), pp. 7098–7105. doi:10.1039/b908220d
  • D. Cai, J. Jin, K. Yusoh, R. Rafiq, and M. Song, High performance polyurethane/functionalized graphene nanocomposites with improved mechanical and thermal properties, Compos. Sci. Technol. 72 (2012), pp. 702–707. doi:10.1016/j.compscitech.2012.01.020
  • J. Wang, X. Wang, C. Xu, M. Zhang, and X. Shang, Preparation of graphene/poly(vinyl alcohol) nanocomposites with enhanced mechanical properties and water resistance, Polym. Int. 60 (2011), pp. 816–822. doi:10.1002/pi.3025
  • J. Liang, Y. Huang, L. Zhang, Y. Wang, Y. Ma, T. Guo, and Y. Chen, Molecular-level dispersion of graphene into poly (vinyl alcohol) and effective reinforcement of their nanocomposites, Adv. Funct. Mater. 19 (2009), pp. 2297–2302. doi:10.1002/adfm.200801776
  • X. Yang, L. Li, S. Shang, and X.-M. Tao, Synthesis and characterization of layer-aligned poly(vinyl alcohol)/graphene nanocomposites, Polymer 51 (2010), pp. 3431–3435. doi:10.1016/j.polymer.2010.05.034
  • R.K. Layek, S. Samanta, D.P. Chatterjee, and A.K. Nandi, Physical and mechanical properties of poly(methyl methacrylate)-functionalized graphene/poly(vinylidine fluoride) nanocomposites: piezoelectric β polymorph formation, Polymer 51 (2010), pp. 5846–5856. doi:10.1016/j.polymer.2010.09.067
  • D.R. Cox, The Theory of the Design of Experiments, Chapman & Hall, Boca Raton, FL, 2000.
  • R. Tchoudakov, O. Breuer, M. Narkis, and A. Siegmann, Conductive polymer blends with low carbon black loading: polypropylene/polyamide, J. Polym. Eng. Sci. 36 (1996), pp. 1336–1346. doi:10.1002/pen.10528
  • A.K. Pandaa and R. Singhb, Optimization of process parameters by taguchi method: catalytic degradation of polypropylene to liquid fuel, Int. J. Multidiscip. Curr. Res. (2013), pp. 50–54.
  • Z.R. Lazic, Design of Experiments in Chemical Engineering: A Practical Guide, John Wiley & Sons, Weinheim, 2006.
  • I. Ali, K. Jayaraman, and D. Bhattacharyya, Effects of resin and moisture content on the properties of medium density fibreboards made from kenaf bast fibres, Ind. Crop. Prod. 52 (2014), pp. 191–198. doi:10.1016/j.indcrop.2013.10.013
  • B.M. Gopalsamy, B. Mondal, and S. Ghosh, Taguchi method and ANOVA: an approach for process parameters optimization of hard machining while machining hardened steel, J. Sci. Ind. Res. India. 68 (2009), pp. 686–695.
  • O. Monticelli, S. Bocchini, A. Frache, E.S. Cozza, O. Cavalleri, and L. Prati, Simple method for the preparation of composites based on PA6 and partially exfoliated graphite, J. Nanometer. 25 (2012), pp. 1–5. doi:10.1155/2012/938962
  • S.R. Ahmad, R.J. Young, and I.A. Kinloch, Raman spectra and mechanical properties of graphene/polypropylene nanocomposites, Int. J. Chem. Eng. Appl. 6 (2015), pp. 1–5. doi:10.7763/IJCEA.2015.V6.440
  • D. Wang, X. Zhang, J.-W. Zha, J. Zhao, Z.-M. Dang, and G.-H. Hu, Dielectric properties of reduced graphene oxide/polypropylene composites with ultralow percolation threshold, Polymer 54 (2013), pp. 1916–1922. doi:10.1016/j.polymer.2013.02.012
  • S. Devikala, P. Kamaraj, and M. Arthanareeswari, Conductivity and dielectric studies of PMMA composites, Chem. Sci. Trans. 2 (2013), pp. 129–134.
  • K. Pielichowska, A. Szczygielska, and E. Spasówka, Preparation and characterization of polyoxymethylene-copolymer/hydroxyapatite nanocomposites for long-term bone implants, Polym. Adv. Technol. 23 (2012), pp. 1141–1150. doi:10.1002/pat.v23.8
  • J.R. Potts, S.H. Lee, T.M. Alam, J. An, M.D. Stoller, R.D. Piner, and R.S. Ruoff, Thermomechanical properties of chemically modified graphene/poly(methyl methacrylate) composites made by in situ polymerization, Carbon 49 (2011), pp. 2615–2623. doi:10.1016/j.carbon.2011.02.023
  • J. Brandrup, E.H. Immergut, and E.A. Grulke, Polymer Handbook, 4th ed., Wiley, New York, NY, 1999.
  • J.A. Brydon, Plastics Materials, Butterworth-Heinemann, Oxford, 1999.
  • K.W. Puts, O.C. Compton, M.J. Palmieri, S.T. Nguyen, and L.C. Brinson, High-nanofillers-content graphene oxide–polymer nanocomposites via vacuum-assisted self-assembly, Adv. Funct. Mater. 20 (2010), pp. 3322–3329. doi:10.1002/adfm.201000723