3,912
Views
42
CrossRef citations to date
0
Altmetric
Original Articles

Study of thermal, flammability and mechanical properties of intumescent flame retardant PP/kenaf nanocomposites

, &
Pages 202-220 | Received 23 Aug 2016, Accepted 18 Sep 2016, Published online: 14 Oct 2016

References

  • S. Kalia, B. Kaith, and I. Kaur, Pretreatments of natural fibers and their application as reinforcing material in polymer composites—A review, Polymer Eng. Sci. 49 (7) (2009), pp. 1253–1272. doi:10.1002/pen.v49:7
  • N.P.G. Suardana, M.S. Ku, and J.K. Lim, Effects of diammonium phosphate on the flammability and mechanical properties of bio-composites, Mater. Des. 32 (4) (2011), pp. 1990–1999. doi:10.1016/j.matdes.2010.11.069
  • T. Wittek and T. Tanimoto, Mechanical properties and fire retardancy of bidirectional reinforced composite based on biodegradable starch resin and basalt fibres, Express Polym. Lett. 2 (11) (2008), pp. 810–822. doi:10.3144/expresspolymlett.2008.94
  • M. Tajvidi, R.H. Falk, and J.C. Hermanson, Effect of natural fibers on thermal and mechanical properties of natural fiber polypropylene composites studied by dynamic mechanical analysis, J. Appl. Polym. Sci. 101 (6) (2006), pp. 4341–4349. doi:10.1002/(ISSN)1097-4628
  • P. Niu, B. Liu, X. Wei, X. Wang, and J. Yang, Study on mechanical properties and thermal stability of polypropylene/hemp fiber composites, J. Reinf. Plast. Compos. 30 (1) (2011), pp. 36–44. doi:10.1177/0731684410383067
  • T.D. Hapuarachchi and T. Peijs, Multiwalled carbon nanotubes and sepiolite nanoclays as flame retardants for polylactide and its natural fibre reinforced composites, Compos. Part. A: Appl. Sci. Manuf. 41 (8) (2010), pp. 954–963. doi:10.1016/j.compositesa.2010.03.004
  • B. Schartel, U. Braun, U. Schwarz, and S. Reinemann, Fire retardancy of polypropylene/flax blends, Polymer 44 (20) (2003), pp. 6241–6250. doi:10.1016/S0032-3861(03)00692-X
  • A. Subasinghe and D. Bhattacharyya, Performance of different intumescent ammonium polyphosphate flame retardants in PP/kenaf fibre composites, Compos. Part. A: Appl. Sci. Manuf 65 (2014), pp. 91–99. doi:10.1016/j.compositesa.2014.06.001
  • B. Du, Z. Guo, P. Song, H. Liu, Z. Fang, and Y. Wu, Flame retardant mechanism of organo-bentonite in polypropylene, Appl. Clay Sci. 45 (3) (2009), pp. 178–184. doi:10.1016/j.clay.2009.05.003
  • B. Li and M. Xu, Effect of a novel charring–foaming agent on flame retardancy and thermal degradation of intumescent flame retardant polypropylene, Polym. Degrad. Stab. 91 (6) (2006), pp. 1380–1386. doi:10.1016/j.polymdegradstab.2005.07.020
  • N.A. Isitman, M. Dogan, E. Bayramli, and C. Kaynak, Fire retardant properties of intumescent polypropylene composites filled with calcium carbonate, Polymer Eng. Sci. 51 (5) (2011), pp. 875–883. doi:10.1002/pen.v51.5
  • A. Vuillequez, M. Lebrun, R.M. Ion, and B. Youssef, Effect of phosphorus-nitrogen intumescent flame retardant on structure and properties of poly(propylene), Macromol. Symp. 290 (1) (2010), pp. 146–155. doi:10.1002/masy.v290:1
  • X. Lai, X. Zeng, H. Li, F. Liao, C. Yin, and H. Zhang, Synergistic effect of phosphorus-containing montmorillonite with intumescent flame retardant in polypropylene, J. Macromol. Sci. B. 51 (6) (2012), pp. 1186–1198. doi:10.1080/00222348.2011.625909
  • G.S. Venkatesh, A. Deb, A. Karmarkar, and S.S. Chauhan, Effect of nanoclay content and compatibilizer on viscoelastic properties of montmorillonite/polypropylene nanocomposites, Mater. Des. 37 (2012), pp. 285–291. doi:10.1016/j.matdes.2011.12.034
  • H.F. Zhu, J. Li, L. Xu, K. Tao, L.X. Xue, and X.Y. Fan, Synergistic effect between montmorillonite intercalated by melamine and intumescent flame retardant (IFR) on Polypropylene, Adv. Mat. Res. 295–297 (2011), 315–318.
  • Z. Zhao, J. Gou, S. Bietto, C. Ibeh, and D. Hui, Fire retardancy of clay/carbon nanofiber hybrid sheet in fiber reinforced polymer composites, Compos. Sci. Technol. 69 (13) (2009), pp. 2081–2087. doi:10.1016/j.compscitech.2008.11.004
  • H. Lu and C.A. Wilkie, Study on intumescent flame retarded polystyrene composites with improved flame retardancy, Polym. Degrad. Stab. 95 (12) (2010), pp. 2388–2395. doi:10.1016/j.polymdegradstab.2010.08.022
  • B. Du and Z. Fang, Effects of carbon nanotubes on the thermal stability and flame retardancy of intumescent flame-retarded polypropylene, Polym. Degrad. Stab. 96 (10) (2011), pp. 1725–1731. doi:10.1016/j.polymdegradstab.2011.08.002
  • H. Demir, E. Arkiş, D. Balköse, and S. Ülkü, Synergistic effect of natural zeolites on flame retardant additives, Polym. Degrad. Stab. 89 (3) (2005), pp. 478–483. doi:10.1016/j.polymdegradstab.2005.01.028
  • M.E. Mngomezulu, M.J. John, V. Jacobs, and A.S. Luyt, Review on flammability of biofibres and biocomposites, Carbohydr. Polym. 111 (2014), pp. 149–182. doi:10.1016/j.carbpol.2014.03.071
  • B. Lecouvet, M. Sclavons, C. Bailly, and S. Bourbigot, A comprehensive study of the synergistic flame retardant mechanisms of halloysite in intumescent polypropylene, Polym. Degrad. Stab. 98 (2013), pp. 2268–2281. doi:10.1016/j.polymdegradstab.2013.08.024
  • B. Kord, Effect of nanoparticles loading on properties of polymeric composite based on hemp fiber/polypropylene, J. Thermoplastic Composite Mater. 25 (7) (2012), pp. 793–806. doi:10.1177/0892705711412815
  • M. Biswal, S. Mohanty, and S.K. Nayak, Thermal stability and flammability of banana-fiber-reinforced polypropylene nanocomposites, J. Appl. Polym. Sci. 125 (SUPPL. S2) (2012), pp. E432–E443. doi:10.1002/app.35246
  • Y. Tang, Y. Hu, B. Li, L. Liu, Z. Wang, Z. Chen, et al., Polypropylene/montmorillonite nanocomposites and intumescent, flame-retardant montmorillonite synergism in polypropylene nanocomposites, J. Polymer Sci. . A: Polymer Chem. 42 (23) (2004), pp. 6163–6173. doi:10.1002/pola.20432
  • Y. Liu, J.S. Wang, C.L. Deng, D.Y. Wang, Y.P. Song, and Y.Z. Wang, The synergistic flame-retardant effect of O-MMT on the intumescent flame-retardant PP/CA/APP systems, Polym. Adv. Technol. 21 (11) (2010), pp. 789–796. doi:10.1002/pat.1502
  • H. Khanjanzadeh, T. Tabarsa, and A. Shakeri, Morphology, dimensional stability and mechanical properties of polypropylene-wood flour composites with and without nanoclay, J. Reinf. Plast. Compos. 31 (5) (2012), pp. 341–350. doi:10.1177/0731684412438793
  • G.S. Ezat, A.L. Kelly, S.C. Mitchell, M. Youseffi, and P.D. Coates, Effect of maleic anhydride grafted polypropylene compatibilizer on the morphology and properties of polypropylene/multiwalled carbon nanotube composite, Polymer Compos. 33 (8) (2012), pp. 1376–1386. doi:10.1002/pc.22264
  • S. Rooj, A. Das, V. Thakur, R.N. Mahaling, A.K. Bhowmick, and G. Heinrich, Preparation and properties of natural nanocomposites based on natural rubber and naturally occurring halloysite nanotubes, Mater. Des. 31 (4) (2010), pp. 2151–2156. doi:10.1016/j.matdes.2009.11.009
  • Y.M. Lvov, D.G. Shchukin, H. Mohwald, and R.R. Price, Halloysite clay nanotubes for controlled release of protective agents, Acs Nano 2 (5) (2008), pp. 814–820. doi:10.1021/nn800259q
  • H. Lin, H. Yan, B. Liu, L. Wei, and B. Xu, The influence of KH-550 on properties of ammonium polyphosphate and polypropylene flame retardant composites, Polym. Degrad. Stab. 96 (7) (2011), pp. 1382–1388. doi:10.1016/j.polymdegradstab.2011.03.016
  • A. Fina, F. Cuttica, and G. Camino, Ignition of polypropylene/montmorillonite nanocomposites, Polym. Degrad. Stab. 97 (12) (2012), pp. 2619–2626. doi:10.1016/j.polymdegradstab.2012.07.017
  • M. Lewin, Reflections on migration of clay and structural changes in nanocomposites, Polym. Adv. Technol. 17 (9–10) (2006), pp. 758–763. doi:10.1002/(ISSN)1099-1581
  • S. Bourbigot, M. Le Bras, S. Duquesne, and M. Rochery, Recent advances for intumescent polymers, Macromol. Mater. Eng. 289 (6) (2004), pp. 499–511. doi:10.1002/(ISSN)1439-2054
  • S. Bourbigot and S. Duquesne, Fire retardant polymers: Recent developments and opportunities, J. Mater. Chem. 17 (22) (2007), pp. 2283–2300. doi:10.1039/b702511d
  • B. Lecouvet, M. Sclavons, S. Bourbigot, J. Devaux, and C. Bailly, Water-assisted extrusion as a novel processing route to prepare polypropylene/halloysite nanotube nanocomposites: Structure and properties, Polymer 52 (19) (2011), pp. 4284–4295. doi:10.1016/j.polymer.2011.07.021
  • R.M. Taib, N.M.A. Khairuddin, M. Ishak, and Z. Arifin, The influence of alkalitreatment and compatibilizer addition on the tensile properties and water absorption behavior of polypropylene/kenaf fiber composites, Advanced Mater. Res. 626 (2013), pp. 449–453. doi:10.4028/www.scientific.net/AMR.626.449
  • L. Shumao, R. Jie, Y. Hua, Y. Tao, and Y. Weizhong, Influence of ammonium polyphosphate on the flame retardancy and mechanical properties of ramie fiber-reinforced poly (lactic acid) biocomposites, Polym. Int. 59 (2) (2010), pp. 242–248.
  • S.-Y. Fu, X.-Q. Feng, B. Lauke, and Y.-W. Mai, Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites, Compos. Part. B: Eng. 39 (6) (2008), pp. 933–961. doi:10.1016/j.compositesb.2008.01.002
  • K. Szustakiewicz, B. Cichy, M. Gazińska, and J. Pigłowski, Comparative study on flame, thermal, and mechanical properties of HDPE/clay nanocomposites with MPP or APP, J. Reinf. Plast. Compos. 32 (14) (2013), pp. 1005–1017. doi:10.1177/0731684413481508
  • F.Z. Arrakhiz, K. Benmoussa, R. Bouhfid, and A. Qaiss, Pine cone fiber/clay hybrid composite: Mechanical and thermal properties, Mater. Des. 50 (2013), pp. 376–381. doi:10.1016/j.matdes.2013.03.033
  • K. Wang, J. Wu, L. Ye, and H. Zeng, Mechanical properties and toughening mechanisms of polypropylene/barium sulfate composites, Compos. Part. A: Appl. Sci. Manuf. 34 (12) (2003), pp. 1199–1205. doi:10.1016/j.compositesa.2003.07.004
  • A. Ismail, A. Hassan, A.A. Bakar, and M. Jawaid, Flame retardancy and mechanical properties of kenaf filled polypropylene (PP) containing ammonium polyphosphate (APP), Sains Malaysiana 42 (4) (2013), pp. 429–434.
  • W. Chanprapanon, N. Suppakarn, and K. Jarukumjorn, Flame retardancy, thermal stability, and mechanical properties of sisal fiber/organoclay/polypropylene composites, Advanced Mater. Res. 410 (2011), pp. 47–50. doi:10.4028/www.scientific.net/AMR.410
  • J. Jordan, K.I. Jacob, R. Tannenbaum, M.A. Sharaf, and I. Jasiuk, Experimental trends in polymer nanocomposites—A review, ‎Mater. Sci. Eng. 393 (1–2) (2005), pp. 1–11. doi:10.1016/j.msea.2004.09.044
  • S. Ochi, Mechanical properties of kenaf fibers and kenaf/PLA composites, Mech. Mater. 40 (4–5) (2008), pp. 446–452. doi:10.1016/j.mechmat.2007.10.006
  • M. Aloui, J. Soulestin, M.F. Lacrampe, P. Krawczak, D. Rousseaux, J. Marchand-Brynaert, et al., A new elaboration concept of polypropylene/unmodified Montmorillonite nanocomposites by reactive extrusion based on direct injection of polypropylene aqueous suspensions, Polymer Eng. Sci. 49 (11) (2009), pp. 2276–2285. doi:10.1002/pen.21474