1,141
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Compressive behavior and deformation kinetics of ultrafine grained aluminum processed by equal channel angular pressing

, , , , &
Pages 56-77 | Received 17 Jan 2017, Accepted 23 Feb 2017, Published online: 21 Mar 2017

References

  • E.O. Hall, The deformation and ageing of mild steel: III discussion of results, Proc. Phys. Society. Section B 64 (1951), pp. 747–753. doi:10.1088/0370-1301/64/9/303
  • N.J. Petch, The cleavage of polycrystals, J. Iron. Steel. Inst. 174 (1953), pp. 25.
  • M.A. Meyers, A. Mishra, and D.J. Benson, Mechanical properties of nanocrystalline materials, Prog. Mater. Sci. 51 (2006), pp. 427–556. doi:10.1016/j.pmatsci.2005.08.003
  • R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci. 45 (2000), pp. 103–189. doi:10.1016/S0079-6425(99)00007-9
  • J.C.M. Li, Mechanical Properties of Nanocrystalline Materials, Pan Stanford Publishing, New York, 2011.
  • Q. Wei, Strain rate effects in the ultrafine grain and nanocrystalline regimes-influence on some constitutive responses, J. Mater. Sci. 42 (2007), pp. 1709–1727. doi:10.1007/s10853-006-0700-9
  • M.A. Meyers, Dynamic Behavior of Materials, Wiley, New York, 1994.
  • G. Saada and T. Kruml, Deformation mechanisms of nanograined metallic polycrystals, Acta. Mater. 59 (2011), pp. 2565–2574. doi:10.1016/j.actamat.2010.12.035
  • T. Suo, Y. Li, K. Xie, F. Zhao, K. Zhang, and Q. Deng, Experimental investigation on strain rate sensitivity of ultra-fine grained copper at elevated temperatures, Mech. Mater. 43 (2011), pp. 111–118. doi:10.1016/j.mechmat.2011.02.002
  • G. Malygin, Analysis of the strain-rate sensitivity of flow stresses in nanocrystalline FCC and BCC metals, Phys. Solid State 49 (2007), pp. 2266–2273. doi:10.1134/S1063783407120098
  • H. Conrad and K. Jung, On the strain rate sensitivity of the flow stress of ultrafine-grained Cu processed by equal channel angular extrusion (ECAE), Scripta. Mater. 53 (2005), pp. 581–584. doi:10.1016/j.scriptamat.2005.04.030
  • Q. Wei, S. Cheng, K.T. Ramesh, and E. Ma, Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: Fcc versus bcc metals, Mater. Sci. Eng. A 381 (2004), pp. 71–79. doi:10.1016/j.msea.2004.03.064
  • G.T. Gray III, T.C. Lowe, C.M. Cady, R.Z. Valiev, and I.V. Aleksandrov, Influence of strain rate & temperature on the mechanical response of ultrafine-grained Cu, Ni, and Al-4Cu-0.5Zr, Nanostruct Mater 9 (1997), pp. 477–480. doi:10.1016/S0965-9773(97)00104-9
  • Y.M. Wang, A.V. Hamza, and E. Ma, Temperature-dependent strain rate sensitivity and activation volume of nanocrystalline Ni, ActaMater. 54 (2006), pp. 2715–2726.
  • J. May, H.W. Höppel, and M. Göken, Strain rate sensitivity of ultrafine-grained aluminium processed by severe plastic deformation, Scripta. Mater. 53 (2005), pp. 189–194. doi:10.1016/j.scriptamat.2005.03.043
  • K. Gholamreza, K.M. Javad, and N. Ali, Microstructure and hot deformation behavior of AlMg6 alloy produced by equal-channel angular pressing, Mater. Sci. Eng. A5 42 (2012), pp. 15–20.
  • C. Langlois, S. Guérin, M. Sennour, M.J. Hÿtch, C. Duhamel, and Y. Champion, Thermo-mechanical behaviour of nanostructured copper, J. Alloy. Compd 434-435 (2007), pp. 279–282. doi:10.1016/j.jallcom.2006.08.300
  • Y.J. Li, W. Blum, and F. Breutinger, Does nanocrystalline Cu deform by Coble creep near room temperature?, Mater. Sci. Eng. A 387-389 (2004), pp. 585–589. doi:10.1016/j.msea.2003.11.086
  • Y.M. Wang, A.V. Hamza, and E. Ma, Activation volume and density of mobile dislocations in plastically deforming nanocrystalline Ni, Appl. Phys. Lett. 86 (2005), pp. 1–3.
  • P. Barai and G.J. Weng, Mechanics of very fine-grained nanocrystalline materials with contributions from grain interior, GB zone, and grain-boundary sliding, Int. J. Plasticity 25 (2009), pp. 2410–2434. doi:10.1016/j.ijplas.2009.04.001
  • T. Suo, Y. Li, K. Xie, F. Zhao, K. Zhang, and Y. Liu, The effect of temperature on mechanical behavior of ultrafine-grained copper by equal channel angular pressing, Mater. Sci. Eng. A 527 (2010), pp. 5766–5772. doi:10.1016/j.msea.2010.05.046
  • B. Farrokh and A.S. Khan, Grain size, strain rate, and temperature dependence of flow stress in ultra-fine grained and nanocrystalline Cu and Al: Synthesis, experiment, and constitutive modeling, Int. J. Plasticity 25 (2009), pp. 715–732. doi:10.1016/j.ijplas.2008.08.001
  • Q.W. Jiang, L. Xiao, and X.W. Li, A comparison of temperature-dependent compressive deformation features of ultrafine-grained Ti and Cu Produced by ECAP, Mater. Sci. Forum 682 (2011), pp. 41–45. doi:10.4028/www.scientific.net/MSF.682.41
  • J. Li and G.J. Weng, A secant-viscosity composite model for the strain-rate sensitivity of nanocrystalline materials, Int. J. Plasticity 23 (2007), pp. 2115–2133. doi:10.1016/j.ijplas.2007.03.016
  • G.A. Malygin, Plasticity and strength of micro- and nanocrystalline materials, Phys. Solid. State. 49 (2007), pp. 1013–1033. doi:10.1134/S1063783407060017
  • T. Kunimine, N. Takata, N. Tsuji, T. Fujii, M. Kato, and S. Onaka, Temperature and strain rate dependence of flow stress in severely deformed Copper by accumulative roll bonding, Mater. Trans. 50 (2009), pp. 64–69. doi:10.2320/matertrans.MD200809
  • D.H. Shin, D.Y. Hwang, Y.J. Oh, and K.T. Park, High-strain-rate superplastic behavior of equal-channel angular-pressed 5083 Al-0.2 Wt Pct Sc, Metall. Mater. Trans. A-Phy. Metall. Mater. Sci. 35 (2004), pp. 825–837. doi:10.1007/s11661-004-0009-8
  • Z.Y. Yu, Q.W. Jiang, and X.W. Li, Temperature-dependent deformation and damage behaviour of ultrafine-grained copper under uniaxial compression, Physica. Status. Solidi. A-Applications Mater. Sci. 205 (2008), pp. 2417–2421. doi:10.1002/pssa.200824003
  • T. Suo, Y.Z. Chen, Y.L. Li, C.X. Wang, and X.L. Fan, Strain rate sensitivity and deformation kinetics of ECAPed aluminium over a wide range of strain rates, Mater. Sci. Eng. A 560 (2013), pp. 545–551. doi:10.1016/j.msea.2012.09.100
  • T. Suo, Y. Li, Y. Guo, and Y. Liu, The simulation of deformation distribution during ECAP using 3D finite element method, Mater. Sci. Eng. A 432 (2006), pp. 269–274. doi:10.1016/j.msea.2006.06.035
  • Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, and T.G. Langdon, Principle of equal-channel angular pressing for the processing of ultra-fine grained materials, Scripta. Mater. 35 (1996), pp. 143–146. doi:10.1016/1359-6462(96)00107-8
  • F. Dalla Torre, R. Lapovok, J. Sandlin, P.F. Thomson, C.H.J. Davies, and E.V. Pereloma, Microstructures and properties of copper processed by equal channel angular extrusion for 1–16 passes, ActaMater. 52 (2004), pp. 4819–4832.
  • H. Kolsky, An investigation of the mechanical properties of materials at very high rates of loading. proceedings of the physical society, Proc. Phys. Soc. B62 (1949), pp. 676–700. doi:10.1088/0370-1301/62/11/302
  • T. Suo, Y.L. Li, F. Zhao, X.L. Fan, and W.G. Guo, Compressive behavior and rate-controlling mechanisms of ultrafine grained copper over wide temperature and strain rate ranges, Mech. Mater. 61 (2013), pp. 1–10. doi:10.1016/j.mechmat.2013.02.003
  • E. Huskins, B. Cao, B. Li, and K. Ramesh, Temperature-dependent mechanical response of an UFG aluminum alloy at high rates, Exp.Mech 52 (2012), pp. 185–194. doi:10.1007/s11340-011-9565-1
  • Y.L. Li, Y.Z. Guo, H.T. Hu, and Q. Wei, A critical assessment of high-temperature dynamic mechanical testing of metals, Int. J. Impact. Eng 36 (2009), pp. 177–184. doi:10.1016/j.ijimpeng.2008.05.004
  • H. Hasegawa, S. Komura, A. Utsunomiya, Z. Horita, M. Furukawa, M. Nemoto, and T.G. Langdon, Thermal stability of ultrafine-grained aluminum in the presence of Mg and Zr additions Mater, Mater. Sci. Eng. A 265 (1999), pp. 188–196. doi:10.1016/S0921-5093(98)01136-8
  • S. Nemat-Nasser and Y. Li, Flow stress of f.c.c. polycrystals with application to OFHC Cu, Acta. Mater. 46 (1998), pp. 565–577. doi:10.1016/S1359-6454(97)00230-9
  • J. Chiddister and L. Malvern, Compression-impact testing of aluminum at elevated temperatures, Exp. Mech 3 (1963), pp. 81–90. doi:10.1007/BF02325890
  • Y.M. Wang and E. Ma, Strain hardening, strain rate sensitivity, and ductility of nanostructured metals, Mater. Sci. Eng. A 375-377 (2004), pp. 46–52. doi:10.1016/j.msea.2003.10.214
  • Y.M. Wang and E. Ma, On the origin of ultrahigh cryogenic strength of nanocrystalline metals, Appl. Phys. Lett 85 (2004), pp. 2750–2752. doi:10.1063/1.1799238
  • Y.M. Wang and E. Ma, Three strategies to achieve uniform tensile deformation in a nanostructured metal, Acta. Mater. 52 (2004), pp. 1699–1709. doi:10.1016/j.actamat.2003.12.022
  • Y.J. Li, X.H. Zeng, and W. Blum, Transition from strengthening to softening by grain boundaries in ultrafine-grained Cu, Acta. Mater. 52 (2004), pp. 5009–5018. doi:10.1016/j.actamat.2004.07.003
  • S. Billard, J.P. Fondère, B. Bacroix, and G.F. Dirras, Macroscopic and microscopic aspects of the deformation and fracture mechanisms of ultrafine-grained aluminum processed by hot isostatic pressing, Acta. Mater. 54 (2006), pp. 411–421. doi:10.1016/j.actamat.2005.09.012
  • S. Hariprasad, S.M.L. Sastry, and K.L. Jerina, Deformation behavior of a rapidly solidified fine grained Al-8.5%Fe-1.2%V-1.7%Si alloy, Acta. Mater. 44 (1996), pp. 383–389. doi:10.1016/1359-6454(95)00160-1
  • D. Witkin, B.Q. Han, and E.J. Lavernia, Mechanical Behavior of Ultrafine-Grained Cryomilled Al 5083 at Elevated Temperature, J. Mater Eng. Perform 14 (2005), pp. 519–527. doi:10.1361/105994905X56232
  • Y. Estrin, Dislocation-density-related constitutive modeling, in Unified constitutive laws of plastic deformation, in A.S. Krausz and K. Krausz, eds., Academic Press, New York, 1996, pp. 69–106.
  • Y.M. Wang, E. Ma, R.Z. Valiev, and Y.T. Zhu, Tough nanostructured metals at cryogenic temperatures, Advanced Mater. 16 (2004), pp. 328–331. doi:10.1002/(ISSN)1521-4095
  • Z. Huang, L.Y. Gu, and J.R. Weertman, Temperature dependence of hardness of nanocrystalleve copper in low-temperature range, Scr. Mater. 37 (1997), pp. 1071–1075. doi:10.1016/S1359-6462(97)00209-1
  • A.S. Khan and C.S. Meredith, Thermo-mechanical response of Al 6061 with and without equal channel angular pressing (ECAP), Int. J. Plasticity 26 (2010), pp. 189–203. doi:10.1016/j.ijplas.2009.07.002
  • U.F. Kocks, A.S. Argon, and M.F. Ashby, Thermodynamics and kinetics of slip, Prog. Mater. Sci. 19 (1975), pp. 1–281.
  • D. Carillard and J.L. Martin, Thermally Activated Mechanisms in Crystal Plasticity, Pergamon, Oxford, 2003. PERGAMON MATERIALS SERIES.
  • N. Wang, Z. Wang, K.T. Aust, and U. Erb, Room temperature creep behavior of nanocrystalline nickel produced by an electrodeposition technique, Mater. Sci. Eng. A237 (1997), pp. 150–158.
  • H. Tanimoto, S. Sakai, and H. Mizubayashi, Mechanical property of high density nanocrystalline gold prepared by gas deposition method, Nanostruct. Mater. 12 (1999), pp. 751–756. doi:10.1016/S0965-9773(99)00230-5
  • B. Cai, Q.P. Kong, P. Cui, L. Lu, and K. Lu, Creep behavior of cold-rolled nanocrystalline pure copper, Scr. Mater. 45 (2001), pp. 1407–1413. doi:10.1016/S1359-6462(01)01177-0
  • H. Conrad and D. Yang, Plastic deformation kinetics of electrodeposited Cu foil at low and intermediate homologous temperatures, J. Electron. Mater. 31 (2002), pp. 304–312. doi:10.1007/s11664-002-0148-x
  • Z. Jiang, H. Zhang, C. Gu, Q. Jiang, and J. Lian, Deformation mechanism transition caused by strain rate in a pulse electric brush-plated nanocrystalline Cu, J. Appl. Phys. 104 (2008), pp. 53505. doi:10.1063/1.2973200
  • N.Q. Chinh, P. Szommer, Z. Horita, and T.G. Langdon, Experimental evidence for grain-boundary sliding in ultrafine-grained aluminum processed by severe plastic deformation, Advanced Mater. 18 (2006), pp. 34–39. doi:10.1002/(ISSN)1521-4095
  • Z.H. Jiang, H.Z. Zhang, C.D. Gu, Q. Jiang, and J.S. Lian, Deformation mechanism transition caused by strain rate in a pulse electric brush-plated nanocrystalline Cu, J. Appl. Phys 104 (2008), pp. 053505. doi:10.1063/1.2973200
  • Y.R. Kolobov, G.P. Grabovetskaya, K.V. Ivanov, and M.B. Ivanov, Grain boundary diffusion and mechanisms of creep of nanostructured metals, Interface Sci. 10 (2002), pp. 31–36. doi:10.1023/A:1015128928158
  • C. Duhamel, Y. Brechet, and Y. Champion, Activation volume and deviation from Cottrell-Stokes law at small grain size, Int. J. Of Plasticity 26 (2010), pp. 747–757. doi:10.1016/j.ijplas.2009.10.003
  • N.Q. Chinh, P. Szommer, T. Csanádi, and T.G. Langdon, Flow processes at low temperatures in ultrafine-grained aluminum, Mater. Sci. Eng. A 434 (2006), pp. 326–334. doi:10.1016/j.msea.2006.07.014
  • H. Conrad and J. Narayan, On the grain size softening in nanocrystalline materials, Scr. Mater. 42 (2000), pp. 1025–1030. doi:10.1016/S1359-6462(00)00320-1
  • X.F. Zhang, T. Fujita, D. Pan, J.S. Yu, T. Sakurai, and M.W. Chen, Influences of grain size and grain boundary segregation on mechanical behavior of nanocrystalline Ni, Mater. Sci. Eng. A 527 (2010), pp. 2297–2304. doi:10.1016/j.msea.2009.12.005
  • Y.M. Wang, R.T. Ott, T. van Buuren, T.M. Willey, M.M. Biener, and A.V. Hamza, Controlling factors in tensile deformation of nanocrystalline cobalt and nickel, Phys. Rev. B 85 (2012), pp. 120.
  • Z.W. Shan, E.A. Stach, J.M.K. Wiezorek, J.A. Knapp, D.M. Follstaedt, and S.X. Mao, Grain boundary-mediated plasticity in nanocrystalline nickel, Science 305 (2004), pp. 654–657. doi:10.1126/science.1098741
  • K.J. Hemker, Understanding how nanocrystalline metals deform, Science 304 (2004), pp. 221–223. doi:10.1126/science.1097058
  • H. Van Swygenhoven, Polycrystalline materials - Grain boundaries and dislocations, Science 296 (2002), pp. 66–67. doi:10.1126/science.1071040
  • Z.W. Shan, J.M.K. Wiezorek, E.A. Stach, D.M. Follstaedt, J.A. Knapp, and S.X. Mao, Dislocation dynamics in nanocrystalline nickel, Phys. Rev. Lett. 98(2007). doi:10.1103/PhysRevLett.98.095502
  • C.R. Weinberger, A.T. Jennings, K. Kang, and J.R. Greer, Atomistic simulations and continuum modeling of dislocation nucleation and strength in gold nanowires, J. Mech. Phys. Solids 60 (2012), pp. 84–103. doi:10.1016/j.jmps.2011.09.010
  • L. Capolungo, M. Cherkaoui, and J. Qu, On the elastic-viscoplastic behavior of nanocrystalline materials, Int. J. Of Plasticity 23 (2007), pp. 561–591. doi:10.1016/j.ijplas.2006.05.003
  • X.G. Qiao, N. Gao, and M.J. Starink, A model of grain refinement and strengthening of Al alloys due to cold severe plastic deformation, Philos. Mag. 92 (2012), pp. 446–470. doi:10.1080/14786435.2011.616865
  • J. Gubicza, N.Q. Chinh, G. Krallics, I. Schiller, and T. Ungar, Microstructure of ultrafine-grained fcc metals produced by severe plastic deformation, Curr. Appl. Phys. 6 (2006), pp. 194–199. doi:10.1016/j.cap.2005.07.039
  • M.A. Meyers, D.J. Benson, O. Vohringer, B.K. Kad, Q. Xue, and H.H. Fu, Constitutive description of dynamic deformation: Physically-based mechanisms, Mater. Sci. Eng. Struct. Mater. Prop. Microstruct. Process 322 (2002), pp. 194–216. doi:10.1016/S0921-5093(01)01131-5
  • P.L. Sun, E.K. Cerreta, G.T. Gray, and J.F. Bingert, The effect of grain size, strain rate, and temperature on the mechanical behavior of commercial purity aluminum, Metall. Mater. Trans. A 37 (2006), pp. 2983–2994. doi:10.1007/s11661-006-0180-1
  • L.L. Zhu and J. Lu, Modelling the plastic deformation of nanostructured metals with bimodal grain size distribution, Int. J. Of Plasticity 30-31 (2012), pp. 166–184. doi:10.1016/j.ijplas.2011.10.003
  • Y.T. Zhu and T.G. Langdon, Influence of grain size on deformation mechanisms: An extension to nanocrystalline materials, Mater. Sci. Eng. Struct. Mater. Prop. Microstruct. Process 409 (2005), pp. 234–242. doi:10.1016/j.msea.2005.05.111
  • N. Hansen and B. Ralph, The strain and grain-size dependence of the flow-stress of Copper, Acta. Metallurgica. 30 (1982), pp. 411–417. doi:10.1016/0001-6160(82)90221-8
  • M.R. Staker and D.L. Holt, Dislocation cell size and dislocation density in copper deformed at temperatures between 25 and 700 degrees C, Acta. Metallurgica. 20 (1972), pp. 569–579. doi:10.1016/0001-6160(72)90012-0
  • A. Kumar and R.G. Kumble, Viscous drag on dislocations at high strain rates in Copper, J. Appl. Phys 40 (1969), pp. 3475–3480. doi:10.1063/1.1658222
  • A. Kumar, F.E. Hauser, and J.E. Dorn, Viscous drag on dislocations in aluminum at high strain rates, Acta. Metallurgica. 16 (1968), pp. 1189–1197. doi:10.1016/0001-6160(68)90054-0
  • E.N. Borodin and A.E. Mayer, Yield strength of nanocrystalline materials under high-rate plastic deformation, Phys. Solid. State. 54 (2012), pp. 808–815. doi:10.1134/S1063783412040038
  • C.R. Weinberger, Dislocation drag at the nanoscale, Acta. Mater. 58 (2010), pp. 6535–6541. doi:10.1016/j.actamat.2010.08.017