2,398
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Flow velocity and temperature sensing using thermosensitive fluorescent polymer seed particles in water

, &
Pages 232-252 | Received 14 Sep 2017, Accepted 22 Nov 2017, Published online: 30 Nov 2017

References

  • R.J. Adrian and J. Westerweel, Particle Image Velocimetry, Cambridge University Press, Cambridge, 2011.
  • M. Raffel, C.E. Willert, S. Wereley, and J. Kompenhans, Particle Image Velocimetry: A Practical Guide, Springer, New York, 2013.
  • A. Cotroni, F. Di Felice, G.P. Romano, and M. Elefante, Investigation of the near wake of a propeller using particle image velocimetry, Exp. Fluids 29 (2000), pp. 227–236. doi:10.1007/s003480070025
  • E.W.M. Roosenboom, A. Heider, and A. Schröder, Investigation of the propeller slipstream with particle image velocimetry, J. Aircr. 46 (2009), pp. 442–449. doi:10.2514/1.33917
  • U. Dierksheide, P. Meyer, T. Hovestadt, and W. Hentschel, Endoscopic 2D particle image velocimetry (PIV) flow field measurements in IC engines, Exp. Fluids. 33 (2002), pp. 794–800. doi:10.1007/s00348-002-0499-3
  • D.L. Reuss, R.J. Adrian, C.C. Landreth, D.T. French, and T.D. Fansler, Instantaneous planar measurements of velocity and large-scale vorticity and strain rate in an engine using particle-image velocimetry. SAE Technical Paper, 1989.
  • X. Cao, J. Liu, N. Jiang, and Q. Chen, Particle image velocimetry measurement of indoor airflow field: A review of the technologies and applications, Energy Build. 69 (2014), pp. 367–380. doi:10.1016/j.enbuild.2013.11.012
  • J. Hong, M. Toloui, L.P. Chamorro, M. Guala, K. Howard, S. Riley, J. Tucker, and F. Sotiropoulos, Natural snowfall reveals large-scale flow structures in the wake of a 2.5-MW wind turbine, Nat. Commun. 24 (2014), pp. 1–9.
  • F. Tauro, M. Porfiri, and S. Grimaldi, Surface flow measurements from drones, J. Hydrology. 540 (2016), pp. 240–245. doi:10.1016/j.jhydrol.2016.06.012
  • M. Ferrari, R. Bashir, and S.T. Wereley, BioMEMS and Biomedical Nanotechnology. Volume IV: Biomoleculars Sensing, Processing and Analysis, Springer, New York, 2007.
  • S.D. Peterson and M.W. Plesniak, The influence of inlet velocity profile and secondary flow on pulsatile flow in a model artery with stenosis, J. Fluid Mech. 616 (2008), pp. 263–301. doi:10.1017/S0022112008003625
  • S.G. Chopski, O.M. Rangus, C.S. Fox, W.B. Moskowitz, and A.L. Throckmorton, Stereo-particle image velocimetry measurements of a patient-specific fontan physiology utilizing novel pressure augmentation stents, Artif. Organs. 39 (2015), pp. 228–236. doi:10.1111/aor.2015.39.issue-3
  • B. Peterson, E. Baum, B. Bohm, V. Sick, and A. Dreizler, High-speed PIV and LIF imaging of temperature stratification in an internal combustion engine. Proceedings of the Combustion Institute, 2013. 34: p. 3653–3660.
  • P. Chamarthy, S.V. Garimella, and S.T. Wereley, Non-intrusive temperature measurement using microscale visualization techniques, Exp. Fluids 47 (2009), pp. 159–170. doi:10.1007/s00348-009-0646-1
  • J. Massing, D. Kaden, C.J. Kahler, and C. Cierpka, Luminescent two-color tracer particles for simultaneous velocity and temperature measurements in microfluidics, Meas. Sci. Technol. 27 (11) (2016), pp. 115301. doi:10.1088/0957-0233/27/11/115301
  • C. Abram, B. Fond, A.L. Heyes, and F. Beyrau, High-speed planar thermometry and velocimetry using thermographic phosphor particles, Appl. Phys. B-Lasers Opt. 111 (2) (2013), pp. 155–160. doi:10.1007/s00340-013-5411-8
  • C. Abram, M. Pougin, and F. Beyrau, Temperature field measurements in liquids using {ZnO} thermographic phosphor tracer particles, Exp. Fluids. 57 (2016), pp. 115. doi:10.1007/s00348-016-2200-2
  • J. Sakakibara and R.J. Adrian, Measurement of temperature field of a Rayleigh-Benard convection using two-color laser-induced fluorescence, Exp. Fluids. 37 (3) (2004), pp. 331–340. doi:10.1007/s00348-004-0821-3
  • A. Charogiannis, I. Zadrazil, and C.N. Markides, Thermographic particle velocimetry TPV for simultaneous interfacial temperature and velocity measurements, Int. J. Heat Mass Transf. 97 (2016), pp. 589–595. doi:10.1016/j.ijheatmasstransfer.2016.02.050
  • C.R. Smith, D.R. Sabatino, and T.J. Praisner, Temperature sensing with thermochromic liquid crystals, Exp. Fluids. 30 (2001), pp. 190–201. doi:10.1007/s003480000154
  • H. Li, C. Xing, and M.J. Braun, Natural convection in a bottom-heated top-cooled cubic cavity with a baffle at the median height: Experiment and model validation, Heat Mass. Transfer. 43 (2007), pp. 895–905. doi:10.1007/s00231-006-0178-7
  • E. Spinosa and S. Zhong, Application of Liquid Crystal Thermography for the investigation of the near-wall coherent structures in a turbulent boundary layer, Sens. Actuators, A. 233 (2015), pp. 207–216. doi:10.1016/j.sna.2015.05.026
  • D. Dabiri, Digital particle image thermometry/velocimetry: A review, Exp. Fluids. 46 (2) (2009), pp. 191–241. doi:10.1007/s00348-008-0590-5
  • A. Seeboth, D. Lotzsch, R. Ruhmann, and O. Muehling, Thermochromic polymers-function by design, Chem. Rev. 114 (5) (2014), pp. 3037–3068. doi:10.1021/cr400462e
  • M. Carlotti, G. Gullo, A. Battisti, F. Martini, S. Borsacchi, M. Geppi, G. Ruggeri, and A. Pucci, Thermochromic polyethylene films doped with perylene chromophores: Experimental evidence and methods for characterization of their phase behaviour, Polym. Chem. 6 (2015), pp. 4003–4012. doi:10.1039/C5PY00486A
  • A. Seeboth, D. Lotzsch, and R. Ruhmann, First example of a non-toxic thermochromic polymer material based on a novel mechanism, J. Mater. Chem. C. 1 (2013), pp. 2811–2816. doi:10.1039/c3tc30094c
  • Y. Iijima and H. Sakaue, Platinum porphyrin and luminescent polymer for two-color pressure- and temperature-sensing probes, Sens. Actuators, A. 184 (2012), pp. 128–133. doi:10.1016/j.sna.2012.06.033
  • M. Culebras, A.M. Lopez, C.M. Gomez, and A. Cantarero, Thermal sensor based on a polymer nanofilm, Sens. Actuators, A. 239 (2016), pp. 161–165. doi:10.1016/j.sna.2016.01.010
  • C.-L. Lee, Y.-W. You, J.-H. Dai, J.-M. Hsu, and J.-S. Horng, Hygroscopic polymer microcavity fiber Fizeau interferometer incorporating a fiber Bragg grating for simultaneously sensing humidity and temperature, Sens. Actuators, B. 222 (2016), pp. 339–346. doi:10.1016/j.snb.2015.08.086
  • T. Ioppolo and M. Manzo, Dome-shaped whispering gallery mode laser for remote wall temperature sensing, Appl. Opt. 53 (2014), pp. 5065–5069. doi:10.1364/AO.53.005065
  • M. Barbieri, F. Cellini, I. Cacciotti, S.D. Peterson, and M. Porfiri, In situ temperature sensing with fluorescent chitosan-coated PNIPAAm/alginate beads, J. Mater. Sci. 52 (2017), pp. 12506–12512. doi:10.1007/s10853-017-1345-6
  • S. Uchiyama, Y. Matsumura, A.P. de Silva, and K. Iwai, Fluorescent molecular thermometers based on polymers showing temperature-induced phase transitions and labeled with polarity-responsive benzofurazans, Anal. Chem. 75 (21) (2003), pp. 5926–5935. doi:10.1021/ac0346914
  • E. Yoshinari, H. Furukawa, and K. Horie, Fluorescence study on the mechanism of rapid shrinking of grafted poly(N-isopropylacrylamide) gels and semi-IPN gels, Polymer. 46 (18) (2005), pp. 7741–7748. doi:10.1016/j.polymer.2005.01.100
  • Y. Shiraishi, R. Miyamoto, X. Zhang, and T. Hirai, Rhodamine-based fluorescent thermometer exhibiting selective emission enhancement at a specific temperature range, Org. Lett. 9 (20) (2007), pp. 3921–3924. doi:10.1021/ol701542m
  • P. Kumari, M.K. Bera, S. Malik, and B.K. Kuila, Amphiphilic and thermoresponsive conjugated block copolymer with its solvent dependent optical and photoluminescence properties: Toward sensing applications, ACS Appl. Mater. Interfaces. 7 (23) (2015), pp. 12348–12354. doi:10.1021/am507266e
  • Y. Shiraishi, R. Miyamoto, and T. Hirai, Rhodamine-conjugated acrylamide polymers exhibiting selective fluorescence enhancement at specific temperature ranges, J. Photochem. Photobiology A: Chem. 200 (2–3) (2008), pp. 432–437. doi:10.1016/j.jphotochem.2008.08.020
  • X. Hu, Y. Li, T. Liu, G. Zhang, and S. Liu, Intracellular cascade FRET for temperature imaging of living cells with polymeric ratiometric fluorescent thermometers, ACS Appl. Mater. Interfaces. 7 (2015), pp. 15551–15560. doi:10.1021/acsami.5b04025
  • T. Hayashi, N. Fukuda, S. Uchiyama, and N. Inada, A cell-permeable fluorescent polymeric thermometer for intracellular temperature mapping in mammalian cell lines, PLoS ONE. 10 (2) (2015), pp. 1–18. doi:10.1371/journal.pone.0117677
  • K. Okabe, N. Inada, C. Gota, Y. Harada, T. Funatsu, and S. Uchiyama, Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy, Nat. Commun. 3 (2012), pp. 705. doi:10.1038/ncomms1714
  • S. Freddi, L. Sironi, R. D’Antuono, D. Morone, A. Dona, E. Cabrini, L. D’Alfonso, M. Collini, P. Pallavicini, G. Baldi, D. Maggioni, and G. Chirico, A molecular thermometer for nanoparticles for optical hyperthermia, Nano Lett. 13 (5) (2013), pp. 2004–2010. doi:10.1021/nl400129v
  • M. Onoda, S. Uchiyama, T. Santa, and K. Imai, A photoinduced electron-transfer reagent for peroxyacetic acid, 4-Ethylthioacetylamino-7- phenylsulfonyl-2,1,3-benzoxadiazole, based on the method for predicting the fluorescence quantum yields, Anal. Chem. 74 (16) (2002), pp. 4089–4096. doi:10.1021/ac0201225
  • B.J. Sun, Y.A. Lin, and P.Y. Wu, Structure analysis of poly(N-isopropylacrylamide) using near-infrared spectroscopy and generalized two-dimensional correlation infrared spectroscopy, Appl. Spectrosc. 61 (7) (2007), pp. 765–771. doi:10.1366/000370207781393271
  • W.-C. Tian and E. Finehout, Microfluidics for Biological Applications, Springer, New York, 2009.
  • W. Thielicke and E.J. Stamhuis, PIVlab - Towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB, J. Open Res. Software. 2 (1) (2014), pp. e30. doi:10.5334/jors.bl
  • P. Ramaprabhu and M.J. Andrews, Simultaneous measurements of velocity and density in buoyancy-driven mixing, Exp. Fluids. 34 (2003), pp. 98–106. doi:10.1007/s00348-002-0538-0
  • A.N. Bashkatov and E.A. Genina Water refractive index in dependence on temperature and wavelength: A simple approximation, Proceedings Volume 5068, Saratov Fall Meeting 2002: Optical Technologies in Biophysics and Medicine IV. 2002.
  • H. Inoue, S. Kuwahara, and K. Katayama, The whole process of phase transition and relaxation of poly(N-isopropylacrylamide) aqueous solution, Phys. Chem. Chem. Phys. 15 (11) (2013), pp. 3814–3819. doi:10.1039/c3cp43309a
  • A.E. Perry, M.S. Chong, and T.T. Lim, The vortex-shedding process behind two-dimensional bluff bodies, J. Fluid Mech. 116 (1982), pp. 77–90. doi:10.1017/S0022112082000378
  • A. De Rosis, G. Falcucci, S. Ubertini, and F. Ubertini, A coupled lattice Boltzmann-finite element approach for two-dimensional fluid–Structure interaction, Comput. Fluids. 86 (2013), pp. 558–568. doi:10.1016/j.compfluid.2013.08.004
  • H. Oertel Jr, Wakes behind blunt bodies, Annu. Rev. Fluid Mech. 22 (1) (1990), pp. 539–562. doi:10.1146/annurev.fl.22.010190.002543
  • G. Di Pasquale, S. Graziani, A. Pollicino, and S. Strazzeri, A vortex-shedding flowmeter based on IPMCs, Smart Mater. Struct. 25 (1) (2016), pp. 015011. doi:10.1088/0964-1726/25/1/015011
  • A. Roshko, On the development of turbulent wakes from vortex streets, NACA Report 1191, 1953.
  • R.D. Blevins, Flow-Induced Vibration, Van Nostrand Reinhold Co, New York, 1977.
  • M. Sahin and R.G. Owens, A numerical investigation of wall effects up to high blockage ratios on two-dimensional flow past a confined circular cylinder, Phys. Fluids. 16 (2004), pp. 1305–1320. doi:10.1063/1.1668285
  • C.D.S. Brites, P.P. Lima, N.J.O. Silva, A. Millan, V.S. Amaral, F. Palacio, and L.D. Carlos, Thermometry at the nanoscale, Nanoscale. 4 (2012), pp. 4799–4829. doi:10.1039/c2nr30663h
  • H. Kye, Y.G. Koh, Y. Kim, S.G. Han, H. Lee, and W. Lee, Tunable temperature response of a thermochromic photonic gel sensor containing N-Isopropylacrylamide and 4-Acryloyilmorpholine, Sensors. 17 (6) (2017), pp. 1-10. doi: 10.3390/s17061398
  • C.A.S. Burel, A. Alsayed, L. Malassis, C.B. Murray, B. Donnio, and R. Dreyfus, Plasmonic-based mechanochromic microcapsules as strain sensors, Small. 13 (39) (2017). doi:10.1002/smll.201701925
  • F. Cellini, L. Block, J. Li, S. Khapli, S.D. Peterson, and M. Porfiri, Mechanochromic response of pyrene functionalized nanocomposite hydrogels, Sens. Actuators B. 234 (2016), pp. 510–520. doi:10.1016/j.snb.2016.04.149
  • N.S. Bakhvalov, Courant-Friedrichs-Lewy condition, Encyclopedia Math. (2001).