3,420
Views
2
CrossRef citations to date
0
Altmetric
Article

Field-dependent nonlinear piezoelectricity: a focused review

Pages 68-84 | Received 26 Nov 2017, Accepted 08 Feb 2018, Published online: 22 Feb 2018

References

  • D. Damjanovic, S.S.N. Bharadwaja, and N. Setter, Toward a unified description of nonlinearity and frequency dispersion of piezoelectric and dielectric responses in Pb(Zr,Ti)O3, Mater, Sci. Engng. B120 (2005), pp. 170–174. doi:10.1016/j.mseb.2005.02.011
  • Q.M. Zhang, W.Y. Pan, S.J. Jang, and L.E. Cross, Domain wall excitations and their contributions to the weak-signal response of doped lead zirconate titanate ceramics, J. Appl. Phys. 64 (1988), pp. 6445–6451. doi:10.1063/1.342059
  • V. Mueller and H. Beige, Nonlinearity of soft PZT piezoceramic for shear and torsional actuator applications, Proceedings of the 11th IEEE International Symposium on Applied Ferroelectricity (1998), pp. 459–462.
  • E.F. Crawley and J. De Luis, Use of piezoelectric actuators as elements of intelligent structures, AIAA J. 25 (1987), pp. 1373–1385. doi:10.2514/3.9792
  • S. Li, W. Cao, and L.E. Cross, The extrinsic nature of nonlinear behavior observed in Lead Zirconate Titanate ferroelectric ceramic, J. Appl. Phys. 69 (1991), pp. 7219–7224. doi:10.1063/1.347616
  • Y. Pasco and A. Berry, A hybrid analytical/numerical model of piezoelectric stack actuators using a macroscopic nonlinear theory of ferroelectricity and a Preisach model of hysteresis, J. Intell. Mater. Syst. Struct. 15 (2004), pp. 375–386. doi:10.1177/1045389X04040907
  • Q.M. Wang, Q. Zhang, B. Xu, R. Liu, and L.E. Cross, Nonlinear piezoelectric behavior of ceramic bending mode actuators under strong electric fields, J. Appl. Phys. 86 (1999), pp. 3352–3360. doi:10.1063/1.371213
  • D.A. Hall, Nonlinearity in piezoelectric ceramics, J. Mater. Sci. 36 (2001), pp. 4575–4601. doi:10.1023/A:1017959111402
  • D. Kugel and L.E. Cross, Behavior of soft piezoelectric ceramics under high sinusoidal electric fields, J. Appl. Phys. 84 (1998), pp. 2815–2830. doi:10.1063/1.368422
  • W. Ren, S.F. Liu, and B.K. Mukherjee, Nonlinear behavior of piezoelectric lead zinc niobate–lead titanate single crystals under ac electric fields and dc bias, Appl. Phys. Lett. 83 (2003), pp. 5268–5277. doi:10.1063/1.1635069
  • Q.M. Zhang, H. Wang, and J. Zhao, Effect of driving field and temperature on the response behavior of ferroelectric actuator and sensor materials, J. Intell. Mater. Syst. Struct. 6 (1995), pp. 84–93. doi:10.1177/1045389X9500600111
  • M. Selten, G.A. Schneider, V. Knoblauch, and R.M. Mc Meeking, On the evolution of the linear material properties of pzt during loading history – an experimental study, int. J. Solids struct. 42 (2005), pp. 3952–3966. doi: 10.1016/j.ijsolstr.2004.12.004
  • E.F. Crawley and E.H. Anderson, Detailed models of piezoceramic actuation of beams, J. Intell. Mater. Syst. Struct. 1 (1990), pp. 4–25. doi:10.1177/1045389X9000100102
  • C.H. Cheng, S.C. Chen, H.C. Kuo, and Z.B. Chou, The poling design of a shear mode piezoelectric actuator, J. Micromech. Microeng. 15 (2005), pp. 2163–2171. doi:10.1088/0960-1317/15/11/024
  • P. Berik, W.Y. Chang, and X. Jiang, Piezoelectric d36 in-plane shear-mode of lead-free BZT-BCT single crystals for torsion actuation, Appl, Phys. Lett. 110 (2017), 052902 (4pp.). doi:10.1063/1.4975587
  • P. Berik, D. Maurya, P. Kumar, M.G. Kang, and S. Priya, Enhanced torsional actuation and stress coupling in Mn-modified 0.93(Na0.5Bi0.5TiO3)-0.07BaTiO3 lead-free piezoceramic system, Sci. Tech. Adv. Mater 18 (2017), pp. 51–59. doi:10.1080/14686996.2016.1254569
  • B. Kranz, A. Benjeddou, and W.G. Drossel, Numerical and experimental characterizations of longitudinally polarized piezoelectric d15 shear macro-fiber composites, Acta Mech. 224 (2013), pp. 2471–2487. doi:10.1007/s00707-013-0952-9
  • O. Rabinovitch and J.R. Vinson, Adhesive layer effects in surface-mounted piezoelectric actuators, J. Intell. Mater. Syst. Struct. 13 (2002), pp. 689–704. doi:10.1177/1045389X02013011001
  • M.N. Ghasemi-Nejhad, R. Russ, and S. Pourjalili, Manufacturing and testing of active composite panels with embedded piezoelectric sensors and actuators, J. Intell. Mater. Syst. Struct. 16 (2005), pp. 319–333. doi:10.1177/1045389X05050103
  • P. Berik and A. Benjeddou, Static experimentations of the piezoceramic d15-shear actuation mechanism for sandwich structures with opposite or same poled patches –Assembled core and composite faces, Int. J. Smart Nano Mater. 2 (2011), pp. 230–244. doi:10.1080/19475411.2011.620645
  • P. Berik and A. Benjeddou, Piezoelectric d15 shear response – Based torsion actuation mechanism: An experimental benchmark and its 3D finite element simulation, Int. J. Smart Nano Mater. 2 (2011), pp. 224–235. doi:10.1080/19475411.2010.510265
  • P. Berik, A. Benjeddou, and M. Krommer, Piezoceramic d15 shear–Induced direct torsion actuation mechanism: A new representative experimental benchmark, Smart Struct. Syst 12 (2013), pp. 483–499. doi:10.12989/sss.2013.12.5.483
  • J.E. Garcia, R. Pérez, D.A. Ochoa, A. Albareda, M.H. Lente, and J.A. Eiras, Evaluation of domain wall motion in lead zirconate titanate ceramics by nonlinear response measurements, J. Appl. Phys. 103 (2008), 054108 (8pp.). doi:10.1063/1.2894595
  • A.J. Masys, W. Ren, G. Yang, and B.K. Mukherjee, Piezoelectric strain in lead zirconate titanate ceramics as a function of electric field, frequency and DC bias, J. Appl. Phys. 94 (2003), pp. 1155–1162. doi:10.1063/1.1587008
  • V. Mueller and Q.M. Zhang, Shear response of lead zirconate titanate piezoceramics, J. Appl. Phys. 83 (1998), pp. 3754–3761. doi:10.1063/1.366603
  • V. Mueller and Q.M. Zhang, Nonlinearity and scaling behavior in donor-doped lead zirconate titanate piezoceramic, Appl. Phys. Lett. 72 (1998), pp. 2692–2694. doi:10.1063/1.121101
  • M. Hagiwara, T. Hoshira, H. Tanaka, and T. Tsurumi, Nonlinear shear responses of lead zirconate titanate piezoelectric ceramics, Japan. J. Appl. Phys 49 (2010), 09MD04 (5pp.). doi:10.1143/JJAP.49.09MD04
  • R. Pomirleanu and V. Giurgiutiu, High-field characterization of piezoelectric and magnetostrictive actuators, J. Intell. Mater. Syst. Struct. 15 (2004), pp. 161–180. doi:10.1177/1045389X04039133
  • L. Huang and H.F. Tiersten, Electroelastic equations describing slow hysteresis in polarized ferroelectric ceramic plates, J. Appl. Phys. 83 (1998), pp. 6126–6139. doi:10.1063/1.367482
  • A. Butz, S. Klinkel, and W. Wagner, A geometrically and materially nonlinear piezoelectric three-dimensional beam finite element formulation including warping, Int. J. Numer. Meth. Engng. 76 (2008), pp. 601–635. doi:10.1002/nme.2320
  • D.H. Pearce, K.A. Seffen, and T.W. Button, Net shape formed spiral and helical piezoelectric actuators, J. Mater. Sci. 37 (2002), pp. 3117–3122. doi:10.1023/A:1016193825298
  • K. Linnemann, S. Klinkel, and W. Wagner, A constitutive model for magneto-strictive and piezoelectric materials, Int. J. Solids Struct. 46 (2009), pp. 1149–1166. doi:10.1016/j.ijsolstr.2008.10.014
  • M. Kaltenbacher, B. Kaltenbacher, T. Hegewald, and R. Lerch, Finite element formulation for ferroelectric hysteresis of piezoelectric materials, J. Intell. Mater. Syst. Struct. 21 (2010), pp. 773–785. doi:10.1177/1045389X10366319
  • R.B. Williams, D.J. Inman, and W.K. Wilkie, Nonlinear response of the macro fiber composite actuator to monotonically increasing voltage, J. Intell. Mater. Syst. Struct. 17 (2006), pp. 601–608. doi:10.1177/1045389X06059501
  • S.P. Joshi, Non-linear constitutive relations for piezoceramic materials, Smart Mater. Struct. 1 (1992), pp. 80–83. doi:10.1088/0964-1726/1/1/012
  • M.A. Trindade and A. Benjeddou, Finite element characterization and parametric analysis of the nonlinear behaviour of an actual d15 shear MFC, Acta Mech. 224 (2013), pp. 2489–2503. doi:10.1007/s00707-013-0951-x
  • A. Benjeddou, Voltage dependent non-linear response of shear macro-fibre composite actuators, Proceedings of the 2nd International Workshop on Advanced Dynamics and Model-based Control of Structures and Machines (2015).
  • A. Benjeddou, T. Hadhri, and E. Jankovich, Determination of parameters Ogden law using bi-axial data and Levenberg – Marquardt - Fletcher algorithm, J. Elastomers Plastics 25 (1993), pp. 224–248. doi:10.1177/009524439302500304
  • A. Benjeddou, On the use of the Levenberg-Marquardt-Fletcher algorithm for the identification of the nonlinear field-dependent power law of the shear MFC piezoelectric coupling d15 coefficient, Proceedings of the 3rd International Workshop on Advanced Dynamics and Model-based Control of Structures and Machines, 2017.
  • Y. Cao and B. Yang, Modelling of multilayer piezoelectric actuators in non-trivial configuration based on actuator design parameters and piezoelectric material properties, J. Intell. Mater. Syst. Struct. 23 (2012), pp. 875–884. doi:10.1177/1045389X12441508
  • C.S. Lynch, The effect of uniaxial stress on the electromechanical response of 8/65/35 PLZT, Acta Mater 44 (1996), pp. 4137–4148. doi:10.1016/S1359-6454(96)00062-6
  • Y. Shindo, F. Narita, and J. Nakagawa, Dynamic electromechanical response and self-sensing of functionally graded piezoelectric cantilever transducers, J. Intell. Mater. Syst. Struct. 20 (2009), pp. 119–126. doi:10.1177/1045389X08090115
  • E.F. Crawley and K.B. Lazarus, Induced strain actuator of isotropic and anisotropic plates, AIAA J. 29 (1991), pp. 944–951. doi:10.2514/3.10684
  • A. Chattopadhyay, H. Gu, and Q. Liu, Modeling smart composite box beams with nonlinear induced strain, Compos. Pt. B. 30 (1999), pp. 603–612. doi:10.1016/S1359-8368(99)00019-0
  • A.P. Thornburgh and A. Chattopadhyay, Nonlinear actuation of smart composites using a coupled piezoelectric mechanical mode, Smart Mater. Struct. 10 (2001), pp. 743–749. doi:10.1088/0964-1726/10/4/319
  • J. Tang and K.W. Wang, High authority and nonlinearity issues in active-passive hybrid piezoelectric networks for structural damping, J. Intell. Mater. Syst. Struct. 11 (2000), pp. 581–591. doi:10.1106/XHPK-9XGT-Q74K-0MM7
  • L.H. Kang, J.W. Lee, J.H. Han, S.J. Chung, and H.Y. Ko, Development of a piezoelectric unimorph using a mechanically pre-stressed substrate, Smart Mater. Struct. 18 (2009), 104007 (9pp.). doi:10.1088/0964-1726/18/10/104007
  • U. Von Wagner and P. Hagedorn, Piezo-beam systems subjected to weak electric field: Experiments and modelling of non-linearities, J. Sound Vib 256 (2002), pp. 861–872. doi:10.1006/jsvi.2002.5024
  • S.K. Parashar, U. Von Wagner, and P. Hagedorn, Finite element modeling of nonlinear vibration behavior of piezo-integrated structures, Comput. Struct 119 (2013), pp. 37–47. doi:10.1016/j.compstruc.2012.12.026
  • H.F. Tiersten, Electroelastic equations for electroded thin plates subject to large driving voltages, J. Appl. Phys. 74 (1993), pp. 3389–3393. doi:10.1063/1.354565
  • M.A. Trindade and A. Benjeddou, Finite element characterization of multilayer d31 piezoelectric macro-fibre composites, Compos. Struct. 151 (2016), pp. 47–57. doi:10.1016/j.compstruct.2015.10.011
  • W. Zouari, T. Ben Zineb, and A. Benjeddou, A FSDT-MITC piezoelectric shell finite element with ferroelectric non-linearity, J. Intell. Mater. Syst. Struct. 20 (2009), pp. 2055–2075. doi:10.1177/1045389X09345560
  • W. Zouari, T. Ben Zineb, and A. Benjeddou, A ferroelectric and ferroelastic 3D hexahedral curvilinear finite element, Int. J. Solids Struct. 48 (2011), pp. 87–109. doi:10.1016/j.ijsolstr.2010.09.007
  • A. Arockiarajan, B. Delibas, A. Menzel, and W. Seemann, Studies on rate-dependent switching effects of piezoelectric materials using a finite element model, Comput. Mater. Sci. 37 (2006), pp. 306–317. doi:10.1016/j.commatsci.2005.08.008
  • M. Kamlah and C. Tsakmakis, Phenomenological modelling of the nonlinear electromechanical coupling in ferroelectrics, Int. J. Solids Struct. 36 (1999), pp. 669–695. doi:10.1016/S0020-7683(98)00040-7
  • Y. Cho and K. Yamanouchi, Nonlinear elastic, piezoelectric, electrostrictive and dielectric constants of Lithium Niobate, J. Appl. Phys. 61 (1987), pp. 875–887. doi:10.1063/1.338138
  • J.C. Baumhauer and H.F. Tiersten, Nonlinear electroelastic equations for small fields superposed on a bias, J. Acoust. Soc. Am. 54 (1973), pp. 1017–1034. doi:10.1121/1.1914312
  • H. Chambon, P. Nicolay, G. Bruckner, and A. Benjeddou, Analysis of the sensitivity to pressure and temperature of a membrane based SAW sensor, Int. J. Smart Nano Mater. 8 (2017), pp. 95–109. doi:10.1080/19475411.2017.1335658
  • L.H. Kang and J.H. Han, Prediction of actuation displacement and force of a pre-stressed piezoelectric unimorph (PUMPS) considering nonlinear piezoelectric coefficient and elastic modulus, Smart Mater. Struct. 19 (2010), 094006 (11pp.). doi:10.1088/0964-1726/19/9/094006
  • Q.M. Wang, B. Xu, V.D. Kugel, and L.E. Cross, Characteristics of shear mode piezoelectric actuators, Proceedings of International Symposium on Applications of Ferroelectrics, 1996.