1,610
Views
5
CrossRef citations to date
0
Altmetric
Articles

Simulation of vessel tissue remodeling with residual stress: an application to in-stent restenosis

&
Pages 11-27 | Received 09 Aug 2018, Accepted 24 Sep 2018, Published online: 18 Oct 2018

References

  • Y.C. Fung, What are the residual stresses doing in our blood vessels? Ann. Biomed. Eng. 19 (3) (1991), pp. 237–249. doi:10.1007/BF02584301.
  • D.P. Richman, R.M. Stewart, J.W. Hutchinson, and V.S. Caviness, Mechanical model of brain convolutional development, Science 189 (4196) (1975), pp. 18–21. doi:10.1126/science.1135626.
  • T. Stylianopoulos, J.D. Martin, V.P. Chauhan, S.R. Jain, B. Diop-Frimpong, N. Bardeesy, B.L. Smith, C.R. Ferrone, F.J. Hornicek, and Y. Boucher, Others, Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors, Proc. Natl. Acad. Sci. 109 (38) (2012), pp. 15101–15108. doi:10.1073/pnas.1213353109.
  • L. Cardamone, A. Valentin, J.F. Eberth, and J.D. Humphrey, Origin of axial prestretch and residual stress in arteries, Biomech. Model. Mechanobiol. 8 (6) (2009), pp. 431–446. doi:10.1007/s10237-008-0146-x.
  • T. Olsson and A. Klarbring, Residual stresses in soft tissue as a consequence of growth and remodeling: Application to an arterial geometry, Eur. J. Mechanics A/Solids 27 (6) (2008), pp. 959–974. doi:10.1016/j.euromechsol.2007.12.006.
  • L.A. Taber and J.D. Humphrey, Stress-modulated growth, residual stress, and vascular heterogeneity, J. Biomech. Eng. 123 (6) (2001), pp. 528–535. doi:10.1115/1.1412451.
  • E. Kuhl, Growing matter: A review of growth in living systems, J. Mech. Behav. Biomed. Mater. 29 (2014), pp. 529–543. doi:10.1016/j.jmbbm.2013.10.009.
  • A.M. Zöllner, A.B. Tepole, A.K. Gosain, and E. Kuhl, Growing skin: Tissue expansion in pediatric forehead reconstruction, Biomech. Model. Mechanobiol. 11 (6) (2012), pp. 855–867. doi:10.1007/s10237-011-0357-4.
  • G. Himpel, E. Kuhl, A. Menzel, and P. Steinmann, Computational modelling of isotropic multiplicative growth, CMES Comput. Modeling Eng. Sci. 8 (2005), pp. 119–134.
  • E. Kuhl, R. Maas, G. Himpel, and A. Menzel, Computational modeling of arterial wall growth: Attempts towards patient-specific simulations based on computer tomography, Biomech. Model. Mechanobiol. 6 (5) (2007), pp. 321–331. doi:10.1007/s10237-006-0062-x.
  • G.D. Dangas, B.E. Claessen, A. Caixeta, E.A. Sanidas, G.S. Mintz, and R. Mehran, In-stent restenosis in the drug-eluting stent era, J. Am. Coll. Cardiol. 56 (23) (2010), pp. 1897–1907. doi:10.1016/j.jacc.2010.07.028.
  • D.M. Pierce, T.E. Fastl, B. Rodriguez-Vila, P. Verbrugghe, I. Fourneau, G. Maleux, P. Herijgers, E.J. Gomez, and G.A. Holzapfel, A method for incorporating three-dimensional residual stretches/stresses into patient-specific finite element simulations of arteries, J. Mech. Behav. Biomed. Mater. 47 (2015), pp. 147–164. doi:10.1016/j.jmbbm.2015.03.024.
  • T.J. Van Dyke and A. Hoger, A new method for predicting the opening angle for soft tissues, J. Biomech. Eng. 124 (4) (2002), pp. 347. doi:10.1115/1.1487881.
  • A. Klarbring, T. Olsson, and J. Stålhand, Theory of residual stresses with application to an arterial geometry, Arch. Mechanics 59 (2007), pp. 341–364.
  • A. Menzel, A fibre reorientation model for orthotropic multiplicative growth, Biomech. Model. Mechanobiol. 6 (5) (2007), pp. 303–320. doi:10.1007/s10237-006-0061-y.
  • E.K. Rodriguez, A. Hoger, and A.D. McCulloch, Stress-dependent finite-growth in soft elastic tissues, J. Biomech. 27 (4) (1994), pp. 455–467. doi:10.1016/0021-9290(94)90021-3.
  • A. Goriely and M. Ben Amar, On the definition and modeling of incremental, cumulative, and continuous growth laws in morphoelasticity, Biomech. Model. Mechanobiol. 6 (5) (2007), pp. 289–296. doi:10.1007/s10237-006-0065-7.
  • S. Göktepe, O.J. Abilez, and E. Kuhl, A generic approach towards finite growth with examples of athlete’s heart, cardiac dilation, and cardiac wall thickening, J. Mech. Phys. Solids. 58 (10) (2010), pp. 1661–1680. doi:10.1016/j.jmps.2010.07.003.
  • E. Kuhl, A. Menzel, and P. Steinmann, Computational modeling of growth, Comput. Mech. 32 (1–2) (2003), pp. 71–88. doi:10.1007/s00466-003-0463-y.
  • J. Cheng and L.T. Zhang, A general approach to derive stress and elasticity tensors for hyperelastic isotropic and anisotropic biomaterials, Int. J. Computational Met. 15 (1) (2017), pp. 1850028. doi:10.1142/S0219876218500287.
  • G. Holzapfel, Nonlinear Solid Mechanics: A Continuum Approach for Engineering, First Edit, Wiley, 2000.
  • J.J. Wentzel, R. Krams, J.C.H. Schuurbiers, J.A. Oomen, J. Kloet, W.J. van der Giessen, P.W. Serruys, and C.J. Slager, Relationship between neointimal thickness and shear stress after Wallstent implantation in human coronary arteries, Circulation 103 (13) (2001), pp. 1740–1745. doi:10.1161/01.CIR.103.13.1740.
  • P.H. Stone, A.U. Coskun, S. Kinlay, M.E. Clark, M. Sonka, A. Wahle, O.J. Ilegbusi, Y. Yeghiazarians, J.J. Popma, and J. Orav, Others, Effect of endothelial shear stress on the progression of coronary artery disease, vascular remodeling, and in-stent restenosis in humans, Circulation 108 (4) (2003), pp. 438–444. doi:10.1161/01.CIR.0000080882.35274.AD.
  • K.C. Koskinas, Y.S. Chatzizisis, A.P. Antoniadis, and G.D. Giannoglou, Role of endothelial shear stress in stent restenosis and thrombosis, J. Am. Coll. Cardiol. 59 (15) (2012), pp. 1337–1349. doi:10.1016/j.jacc.2011.10.903.
  • V. Alastrué, M.A. Martínez, and M. Doblaré, Modelling adaptative volumetric finite growth in patient-specific residually stressed arteries, J. Biomech. 41 (8) (2008), pp. 1773–1781. doi:10.1016/j.jbiomech.2008.02.036.
  • P. Ciarletta, M. Destrade, and A.L. Gower, On residual stresses and homeostasis: An elastic theory of functional adaptation in living matter, Sci. Rep. 6 (March) (2016), pp. 1–8. doi:10.1038/srep24390.
  • J. Ohayon, O. Dubreuil, P. Tracqui, H.S. Le Floc’, G. Rioufol, L. Chalabreysse, F. Thivolet, R.I. Pettigrew, and G. Finet, Influence of residual stress/strain on the biomechanical stability of vulnerable coronary plaques: Potential impact for evaluating the risk of plaque rupture, Am. J. Physiol. Heart Circ. Physiol. 293 (3) (2007), pp. 1987–1996. doi:10.1152/ajpheart.00018.2007.
  • L. Tian, S.R. Lammers, P.H. Kao, J.A. Albietz, K.R. Stenmark, H.J. Qi, R. Shandas, and K.S. Hunter, Impact of residual stretch and remodeling on collagen engagement in healthy and pulmonary hypertensive calf pulmonary arteries at physiological pressures, Ann. Biomed. Eng. 40 (7) (2012), pp. 1419–1433. doi:10.1007/s10439-012-0509-4.