3,074
Views
15
CrossRef citations to date
0
Altmetric
Articles

Bioinspired design of hybrid composite materials

, , &
Pages 90-105 | Received 06 Aug 2018, Accepted 23 Oct 2018, Published online: 24 Nov 2018

References

  • J.F.V. Vincent, Structural Biomaterials, Princeton, New Jersey: Princeton University Press, 2012.
  • J.W.C. Dunlop and P. Fratzl, Biological composites, Annu. Rev. Mater. Res. 40 (2010), pp. 1–24. doi:10.1146/annurev-matsci-070909-104421.
  • M.A. Meyers, P.-Y. Chen, A.Y.-M. Lin, and Y. Seki, Biological materials: Structure and mechanical properties, Prog. Mater. Sci. 53 (2008), pp. 1–206. doi:10.1016/j.pmatsci.2007.05.002.
  • R.O. Ritchie, The conflicts between strength and toughness, Nat. Mater. 10 (2011), pp. 817–822. doi:10.1038/nmat3084.
  • J.-Y. Rho, L. Kuhn-Spearing, and P. Zioupos, Mechanical properties and the hierarchical structure of bone, Med. Eng. Phys. 20 (1998), pp. 92–102. doi:10.1016/S1350-4533(98)00007-1.
  • M.E. Launey, M.J. Buehler, and R.O. Ritchie, On the mechanistic origins of toughness in bone, Annu. Rev. Mater. Res. 40 (2010), pp. 25–53. doi:10.1146/annurev-matsci-070909-104427.
  • G.E. Fantner, T. Hassenkam, J.H. Kindt, J.C. Weaver, H. Birkedal, L. Pechenik, J.A. Cutroni, G.A.G. Cidade, G.D. Stucky, D.E. Morse, and P.K. Hansma, Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture, Nat. Mater. 4 (2005), pp. 612–616. doi:10.1038/nmat1428.
  • E. Hamed, Y. Lee, and I. Jasiuk, Multiscale modeling of elastic properties of cortical bone, Acta Mech. 213 (2010), pp. 131–154. doi:10.1007/s00707-010-0326-5.
  • A.P. Jackson, J.F.V. Vincent, and R.M. Turner, The mechanical design of nacre, Proc. R. Soc. Lond. B Biol. Sci. 234 (1988), pp. 415–440. doi:10.1098/rspb.1988.0056.
  • L. Lin, X. Wang, and X. Zeng, Computational modeling of interfacial behaviors in nanocomposite materials, Int. J. Solids Struct. 115–116 (2017), pp. 43–52. doi:10.1016/j.ijsolstr.2017.02.029.
  • R.Z. Wang, Z. Suo, A.G. Evans, N. Yao, and I.A. Aksay, Deformation mechanisms in nacre, J. Mater. Res. 16 (2001), pp. 2485–2493. doi:10.1557/JMR.2001.0340.
  • U.G.K. Wegst, H. Bai, E. Saiz, A.P. Tomsia, and R.O. Ritchie, Bioinspired structural materials, Nat. Mater. 14 (2015), pp. 23–36. doi:10.1038/nmat4089.
  • P. Zhang, M.A. Heyne, and A.C. To, Biomimetic staggered composites with highly enhanced energy dissipation: Modeling, 3D printing, and testing, J. Mech. Phys. Solids. 83 (2015), pp. 285–300. doi:10.1016/j.jmps.2015.06.015.
  • Z. Qin, B.G. Compton, J.A. Lewis, and M.J. Buehler, Structural optimization of 3D-printed synthetic spider webs for high strength, Nat. Commun. 6 (2015), pp. 7038. doi:10.1038/ncomms8038.
  • J.D. Currey, Bones: Structure and Mechanics, Princeton, New Jersey: Princeton University Press, 2002.
  • P. Ducheyne, K. Healy, D.W. Hutmacher, D.W. Grainger, and C.J. Kirkpatrick (eds.), Comprehensive Biomaterials II, 2nd ed., Elsevier, Amsterdam Boston Heidelberg, 2017.
  • N. Reznikov, R. Shahar, and S. Weiner, Bone hierarchical structure in three dimensions, Acta Biomater. 10 (2014), pp. 3815–3826. doi:10.1016/j.actbio.2014.05.024.
  • H.P. Schwarcz, E.A. McNally, and G.A. Botton, Dark-field transmission electron microscopy of cortical bone reveals details of extrafibrillar crystals, J Struct Biol.. 188 (2014), pp. 240–248. doi:10.1016/j.jsb.2014.08.006.
  • M. Balooch, S. Habelitz, J.H. Kinney, S.J. Marshall, and G.W. Marshall, Mechanical properties of mineralized collagen fibrils as influenced by demineralization, J Struct Biol. 162 (2008), pp. 404–410. doi:10.1016/j.jsb.2007.10.011.
  • L. Lin, J. Samuel, X. Zeng, and X. Wang, Contribution of extrafibrillar matrix to the mechanical behavior of bone using a novel cohesive finite element model, J. Mech. Behav. Biomed. Mater. 65 (2017), pp. 224–235. doi:10.1016/j.jmbbm.2016.08.027.
  • F. Libonati, G.X. Gu, Z. Qin, L. Vergani, and M.J. Buehler, Bone-inspired materials by design: Toughness amplification observed using 3D printing and testing, Adv. Eng. Mater. 18 (2016), pp. 1354–1363. doi:10.1002/adem.v18.8.
  • L.S. Dimas, G.H. Bratzel, I. Eylon, and M.J. Buehler, Tough composites inspired by mineralized natural materials: Computation, 3D printing, and testing, Adv. Funct. Mater. 23 (2013), pp. 4629–4638. doi:10.1002/adfm.v23.36.
  • L. Lin, X. Wang, and X. Zeng, Geometrical modeling of cell division and cell remodeling based on voronoi tessellation method, CMES-comput, Model. Eng. Sci. 98 (2014), pp. 203–220.
  • E. Gentleman, A.N. Lay, D.A. Dickerson, E.A. Nauman, G.A. Livesay, and K.C. Dee, Mechanical characterization of collagen fibers and scaffolds for tissue engineering, Biomaterials. 24 (2003), pp. 3805–3813.
  • F. Barthelat and R. Rabiei, Toughness amplification in natural composites, J. Mech. Phys. Solids. 59 (2011), pp. 829–840.
  • T.M. Boyce, D.P. Fyhrie, M.C. Glotkowski, E.L. Radin, and M.B. Schaffler, Damage type and strain mode associations in human compact bone bending fatigue, J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 16 (1998), pp. 322–329.
  • A.A. Poundarik, T. Diab, G.E. Sroga, A. Ural, A.L. Boskey, C.M. Gundberg, and D. Vashishth, Dilatational band formation in bone, Proc. Natl. Acad. Sci. 109 (2012), pp. 19178–19183.
  • W. Wei and Q. Yang, A Finite Element Procedure for Analysis of Chemo-Mechanical Coupling Behavior of Hydrogels, Model. Eng. Sci. 112 (2016), pp. 033–058.
  • M. Li, J. Zhang, N. Zhou, and Q. Zhang, Deformation and failure analysis of river levee induced by coal mining and its influence factor, CMES-Comput, Model. Eng. Sci. 113 (2017), pp. 183–194.
  • H. Dong, Y. Nie, Z. Yang, Y. Zhang, and Y. Wu, Numerical accuracy analysis of asymptotic homogenization method and multiscale finite element method for periodic composite materials, CMES-comput, Model. Eng. Sci. 111 (2016), pp. 395–419.
  • E. Hedayati and M. Vahedi, Numerical investigation of penetration in ceramic/aluminum targets using smoothed particle hydrodynamics method and presenting a modified analytical model, CMES-comput, Model. Eng. Sci. 113 (2017), pp. 295–323.
  • M.C. Ray, L. Dong, and S.N. Atluri, Simple efficient smart finite elements for the analysis of smart composite beams - semantic scholar, CMES-comput, Model. Eng. Sci. 111 (2016), pp. 437–471.
  • Y. Guo and J. Nairn, Simulation of dynamic 3D crack propagation within the material point method, CMES-comput, Model. Eng. Sci. 113 (2017), pp. 389–410.