3,698
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Temperature dependence of dielectric breakdown of silicone-based dielectric elastomers

ORCID Icon, , & ORCID Icon
Pages 129-146 | Received 03 Mar 2020, Accepted 10 May 2020, Published online: 25 May 2020

References

  • Jahns TM, Blasko V. Recent advances in power electronics technology for industrial and traction machine drives. Proc IEEE. 2001;89:963.
  • Kim IC, Lee SJ. Characterization of a miniature thermal shear-stress sensor with backside connections. Sens Actuators A. 2006;128:305.
  • Ortiz C, Skorek AW, Lavoie M, et al. Parallel CFD analysis of conjugate heat transfer in dry-type transformer. IEEE Trans Ind Appl. 2009;45:1530.
  • Sim LC, Ramanan SR, Ismail H, et al. Thermal characterization of Al2O3 and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes. Thermochim Acta. 2005;430:155.
  • Hikita M, Ieda M, Sawa G. Numerical analysis of steady-state thermal breakdown. J Appl Phys. 1983;54:2025.
  • Nagao M, Kimura T, Mizuno Y, et al. Detection of Joule heating before dielectric breakdown in polyethylene films. IEEE Trans Electr Insul. 1990;25:715.
  • Madsen FB, Daugaard AE, Hvilsted S, et al. The current state of silicone-based dielectric elastomer transducers. Macromol Rapid Commun. 2016;37:378.
  • Zhou W, Qi S, Zhao H, et al. Thermally conductive silicone rubber reinforced with boron nitride particle. Polym Composites. 2007;28:23.
  • Shankar R, Ghosh TK, Spontak RJ. Dielectric elastomers as next-generation polymeric actuators. Soft Matter. 2007;3:1116.
  • Shit SC, Shah P. A review on silicone rubber. Nat Acad Sci Lett. 2013;36:355.
  • Plante JS, Dubowsky S. Large-scale failure modes of dielectric elastomer actuators. Int J Solids Struct. 2006;43:7727.
  • Zakaria SB, Morshuis PHF, Benslimane MY, et al. The electrical breakdown of thin dielectric elastomers: thermal effects. Proc SPIE. 2014;9056:90562V.
  • Katiyar A, Dhar P, Nandi T, et al. Superior dielectric breakdown strength of graphene and carbon nanotube infused nano-oils. IEEE Trans Dielectr Electr Insul. 2016;23:943.
  • González N, Custal MÀ, Tomara GN, et al. Dielectric response of vulcanized natural rubber containing BaTiO3 filler: the role of particle functionalization. Eur Polym J. 2017;97:57.
  • Jung HM, Kang JH, Yang SY, et al. Barium titanate nanoparticles with diblock copolymer shielding layers for high-energy density nanocomposites. Chem Mater. 2010;22:450.
  • Zhang X, Chen H, Ma Y, et al. Preparation and dielectric properties of core-shell structural composites of poly(1H,1H,2H,2H-perfluorooctyl methacrylate)@BaTiO3 nanoparticles. Appl Surf Sci. 2013;277:121.
  • Skov AL, Yu L. Optimization techniques for improving the performance of silicone-based dielectric elastomers. Adv Eng Mater. 2018;20:1700762.
  • Ishmael SA, Slomski M, Luo H, et al. Thermal conductivity and dielectric properties of a TiO2-based electrical insulator for use with high temperature superconductor-based magnets. Supercond Sci Technol. 2014;27:095018.
  • Xue Q, Liu W, Zhang Z. Friction and wear properties of a surface-modified TiO2 nanoparticle as an additive in liquid paraffin. Wear. 1997;213:29.
  • Balasubramanian B, Kraemer KL, Reding NA, et al. Synthesis of monodisperse TiO2-paraffin core-shell nanoparticles for improved dielectric properties. ACS Nano. 2010;4:1893.
  • Reyes-Coronado D, Rodríguez-Gattorno G, Espinosa-Pesqueira ME, et al. Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology. 2008;19:145605.
  • Yu L, Skov AL. Silicone rubbers for dielectric elastomers with improved dielectric and mechanical properties as a result of substituting silica with titanium dioxide. Int J Smart Nano Mater. 2015;6:268.
  • Carpi F, Rossi DD. Improvement of electromechanical actuating performances of a silicone dielectric elastomer by dispersion of titanium dioxide powder. IEEE Trans Dielectr Electr Insul. 2005;12:835.
  • González N, Custal MÀ, Rodríguez D, et al. Influence of ZnO and TiO2 particle sizes in the mechanical and dielectric properties of vulcanized rubber. Mater Res. 2017;20:1082.
  • Vudayagiri S, Zakaria SB, Yu L, et al. High breakdown-strength composites from liquid silicone rubbers. Smart Mater Struct. 2014;23:105017.
  • Silva VP, Paschoalino MP, Goncalves MC, et al. Silicone rubbers filled with TiO2: characterization and photocatalytic activity. Mater Chem Phys. 2009;113:395.
  • Choi C, Yoo HS, Oh JM. Preparation and heat transfer properties of nanoparticle-in-transformer oil dispersions as advanced energy-efficient coolants. Curr Appl Phys. 2008;8:710.
  • Diaham S, Zelmat S, Locatelli ML, et al. Dielectric breakdown of polyimide films: area, thickness and temperature dependence. IEEE Trans Dielectr Electr Insul. 2010;17:18.
  • Baudot A, Mazuer J, Odin J. Thermal conductivity of a RTV silicone elastomer between 1.2 and 300 K. Cryogenics. 1998;38:227.
  • Humphrey D, Condra L, Pendse H, et al. An avionics guide to uprating of electronic parts. IEEE Trans Compon Packag Technol. 2000;23:595.
  • Rahim HRBA, Lokman MQB, Harun SW, et al. Temperature sensing by side coupling of light through zinc oxide nanorods on optical fibers. Sens Actuators A. 2017;257:15.
  • Madsen FB, Yu L, Mazurek P, et al. A simple method for reducing inevitable dielectric loss in high-permittivity dielectric elastomers. Smart Mater Struct. 2016;25:075018.
  • Brook MA, Saier HU, Schnabel J, et al. Pretreatment of liquid silicone rubbers to remove volatile siloxanes. Ind Eng Chem Res. 2007;46:8796.
  • Zakaria SB, Morshuis PHF, Benslimane MY, et al. The electrical breakdown strength of pre-stretched elastomers, with and without sample volume conservation. Smart Mater Struct. 2015;24:055009.
  • Barber P, Balasubramanian S, Anguchamy Y, et al. Polymer composite and nanocomposite dielectric materials for pulse power energy storage. Materials. 2009;2:1697.
  • Wang J, Hu J, Sun Q, et al. Dielectric and energy storage performances of PVDF-based composites with colossal permittivitied Nd-doped BaTiO3 nanoparticles as the filler. AIP Adv. 2017;7:125104.
  • Hao YN, Wang XH, O’Brien S, et al. Flexible BaTiO3/PVDF gradated multilayer nanocomposite film with enhanced dielectric strength and high energy density. J Mater Chem C. 2015;3:9740.
  • Mazurek P, Yu L, Gerhard R, et al. Glycerol as high-permittivity liquid filler in dielectric silicone elastomers. J Appl Polym Sci. 2016;133:44153.
  • Madsen FB, Daugaard AE, Hvilsted S, et al. Dipolar cross-linkers for PDMS networks with enhanced dielectric permittivity and low dielectric loss. Smart Mater Struct. 2013;22:104002.
  • Gun’ko VM, Borysenko MV, Pissis P, et al. Polydimethylsiloxane at the interfaces of fumed silica and zirconia/fumed silica. Appl Surf Sci. 2007;253:7143.
  • Vu-Cong T, Jean-Mistral C, Sylvestre A. Impact of the nature of the compliant electrodes on the dielectric constant of acrylic and silicone electroactive polymers. Smart Mater Struct. 2012;21:105036.
  • Papageorgiou AC, Beglitis NS, Pang CL, et al. Electron traps and their effect on the surface chemistry of TiO2. PNAS. 2010;107:2391.
  • Du YF, Lv YZ, Zhou JQ, et al. Effect of TiO2 nanoparticles on the breakdown strength of transformer oil. Annual Report Conference on Electrical Insulation and Dielectric Phenomena, IEEE; 2010, 1–4, West Lafayette, Indiana, USA.
  • Christensen LR, Hassager O, Skov AL. Electro-thermal model of thermal breakdown in multilayered dielectric elastomers. AIChe J. 2019;65:859.
  • Yamaguchi M, Doan VA, Nobukawa S. Structure and properties of rubbers with silica nanoparticles as petroleum-free fillers. Advanced Structured Materials. 2015;74:563.
  • Minoura I, Katayama E, Sekimoto K, et al. One-dimensional Brownian motion of charged nanoparticles along microtubules: a model system for weak binding interactions. Biophys J. 2010;98:1589.
  • Silau H, Stabell NB, Petersen FR, et al. Weibull analysis of electrical breakdown strength as an effective means of evaluating elastomer thin film quality. Adv Eng Mater. 2018;20:1800241.
  • Zakaria SB, Madsen FB, Skov AL. Post curing as an effective means of ensuring the long-term reliability of PDMS thin films for dielectric elastomer applications. Polym Plast Technol Eng. 2017;56:83.
  • Razak A, Yu L, Skov AL. Voltage-stabilized elastomers with increased relative permittivity and high electrical breakdown strength by means of phase separating binary copolymer blends of silicone elastomers. RSC Adv. 2017;7:17848.
  • Tommasini D, Proceedings of CAS Courses on Magnets, Bruges, Belgium, Dielectric insulation and high-voltage issues, 16-25 June 2009, pp. 335–355.
  • Sangram KR, Sharma SK, Sudarshan K, et al. Subnanoscopic inhomogeneities in model end-linked PDMS networks probed by positron annihilation lifetime spectroscopy and their effects on thermomechanical properties. Polymer. 2016;101:358.