1,605
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Irradiation induced elongation of Fe nanoparticles embedded in silica films

, , &
Pages 147-158 | Received 09 Mar 2020, Accepted 25 May 2020, Published online: 11 Jun 2020

References

  • Lance Kelly K, Coronado E, Zhao LL, et al. The Optical Properties of Metal Nanoparticles: the Influence of Size, Shape, and Dielectric Environment. J Phys Chem B. 2003;107(3):668–677.
  • Kreibig U, Vollmer M. Optical Properties of Metal Clusters. Berlin, Heidelberg, New York: Springer-Verlag; 1995.
  • Nakajima A, Nakao H, Ueno H, et al. Coulomb blockade in Sb nanocrystals formed in thin, thermally grown SiO2 layers by low-energy ion implantation. Appl Phys Lett. 1998;73:1071.
  • Solzi M, Ghidini M, Asti G. Magnetic Nanostructures. Nalwa HS, edited by. Valencia, CA, USA: American Sci. Pub; 2002. p. 123.
  • Amekura H, Kitazawa H, Umeda N, et al. Nickel nanoparticles in silica glass fabricated by 60 keV negative-ion implantation. Nucl Instrum Methods Phys Res B. 2004;222:114.
  • Amekura H, Fudamoto Y, Takeda Y, et al. Curie transition of superparamagnetic nickel nanoparticles in silica glass: A phase transition in a finite size system. Phys Rev B. 2005;71:172404.
  • Lance Kelly K, Coronado E, Lin L, et al. The Optical Properties of Metal Nanoparticles: the Influence of Size, Shape, and Dielectric Environment. J Phys Chem B. 2002;107(3):668–677.
  • Hong YX, Charles Y, Campbell T. Magic-Angle-Spinning NMR Techniques for Measuring Long-Range Distances in Biological Macromolecules. Acc Chem Res. 2013;46(8):1671–1672.
  • Luo X, Morrin A, Killard A, et al. Application of Nanoparticles in Electrochemical Sensors and Biosensors. electroanalysis. 2006;18(4):319–326.
  • Segev-Bar M, Haick H. Flexible Sensors Based on Nanoparticles. ACS Nano. 2013;7(10):8366–8378.
  • van Dillen T, Snoeks E, Fukarek W, et al. Anisotropic deformation of colloidal particles under MeV ion irradiation. Nucl Instrum Methods B, Volumes. 2001;175–177:350.
  • Penninkhof J, van Dillen T, Roorda S, et al. Anisotropic deformation of metallo-dielectric core–shell colloids under MeV ion irradiation. Nucl Instru Methods Phys Res B. 2006;242:523.
  • van Dillen T, Polman A, van Kats CM, et al. Ion beam-induced anisotropic plastic deformation at 300 keV. Appl Phys Lett. 2003;83(2124):4315–4317.
  • D’Orl´eans C, Stoquert JP, Estourn`es C, et al. Anisotropy of Co nanoparticles induced by swift heavy ions. Phys Rev B. 2003;67:220101.
  • Gilliot M, En Naciri A, Johann L, et al. Optical anisotropy of shaped oriented cobalt nanoparticles by generalized spectroscopic ellipsometry. Phys Rev B. 2007;76:045424.
  • Roorda S, van Dillen T, Polman A, et al. Aligned Gold Nanorods in Silica Made by Ion Irradiation of Core–Shell Colloidal Particles. Adv Mater. 2004;16:235.
  • Mishra YK, Singh F, Avasthi DK, et al. Synthesis of elongated Au nanoparticles in silica matrix by ion irradiation. Appl Phys Lett. 2007;91:063103.
  • Awazu K, Wang X, Fujimaki M, et al. Elongation of gold nanoparticles in silica glass by irradiation with swift heavy ions. Phys Rev B. 2008;78:054102.
  • Penninkhof JJ, Polman A, Polman A, et al. Angle-Dependent Extinction of Anisotropic Silica/Au Core/Shell Colloids Made via Ion Irradiation. Adv Mater (Weinheim, Ger). 2005;17:1484.
  • Dawi EA, Rizza G, Mink MP, et al. Ion beam shaping of Au nanoparticles in silica: particle size and concentration dependence. J Appl Phys. 2009;105:074305.
  • Rizza G, Attouchi F, Coulon P-E, et al. Rayleigh-like instability in the ion-shaping of Au–Ag alloy nanoparticles embedded within a silica matrix. Nanotechnology. 2011;22:175305.
  • Ridgway MC, Giulian R, Sprouster DJ, et al. Role of Thermodynamics in the Shape Transformation of Embedded Metal Nanoparticles Induced by Swift Heavy-Ion Irradiation. Phys Rev Lett. 2011;106:095505.
  • Dufour C, Khomenkov V, Rizza G, et al. Ion-matter interaction: the three-dimensional version of the thermal spike model. Application to nanoparticle irradiation with swift heavy ions. J Phys D. 2012;45:065302.
  • Srivastava SK, Tomar R, Amirthapandian S, et al. Formation and dynamics of Au nanoparticles in a silica-glass: synergistic effects of temperature and fluences of ion irradiations. Appl Phys A. 2018;124:648.
  • Yang YT, Zhang CH, Su CH, et al. Aligned Elongation of Ag Nanoparticles Embedded in Silica Irradiated with High Energy Ni Ions. Chin Phys Lett. 2018;35:096102.
  • Amekura H, Narumi K, Chiba A, et al. C60 ions of 1 MeV are slow but elongate nanoparticles like swift heavy ions of hundreds MeV. Sci Rep. 2019;9:14980.
  • Wolf S, Rensberg J, Johannes A, et al. Shape manipulation of ion irradiated Ag nanoparticles embedded in lithium niobate. Nanotechnology. 2016;27:145202.
  • Li R, Pang C, Amekura H, et al. Ag nanoparticles embedded in Nd:YAG crystals irradiated with tilted beam of 200 MeV Xe ions: optical dichroism correlated to particle reshaping. Nanotechnology. 2018;29:424001.
  • Oliver A, Reyes-Esqueda JA, Cheang-Wong JC, et al. Controlled anisotropic deformation of Ag nanoparticles by Si ion irradiation. Phys Rev B. 2006;74:245425.
  • Ovidio Peña-Rodríguez A, Olivares PJ, G. Silva-Pereyra H, et al. Understanding the ion-induced elongation of silver nanoparticles embedded in silica. Sci Rep. 2017;7:922.
  • Alejandro Reyes-Esqueda J, Torres-Torres C, Carlos Cheang-Wong J, et al. Large optical birefringence by anisotropic silver nanocomposites. Opt Exp. 2008;16(2):717.
  • Kumar H, Ghosh S, Avasthi DK. Ion beam-induced shaping of Ni nanoparticles embedded in a silica matrix: from spherical to prolate shape. Nanoscale Res Lett. 2011;6:155.
  • Dawi EA, Karar AA, Habraken FHPM. Anisotropic deformation of NiO nanoparticles embedded in silica under swift heavy ion irradiation. Nanotechnology. 2019;30(28):7.
  • Trinkhaus H, Ryazanov A. Viscoelastic Model for the Plastic Flow of Amorphous Solids under Energetic Ion Bombardment. Phys Rev Lett. 1995;74:5072–5075.
  • Trinkaus H. Dynamics of viscoelastic flow in ion tracks: origin of plastic deformation of amorphous materials. Nucl Instrum Methods Phys Res, Sect B. 1998;146:204.
  • Wang ZG, Dufour C, Paumier E, et al. Se sensitivity of metals under swift-heavy-ion irradiation: a transient thermal process. J Phys Condens Matter. 1994;6:6733.
  • Wang ZG, Dufour C, Paumier E, et al. Se sensitivity of metals under swift-heavy-ion irradiation: a transient thermal process. J Phys Condens Matter. 1995;7:2525.
  • Toulemonde M, Dufour C, Meftah A, et al. Transient thermal processes in heavy ion irradiation of crystalline inorganic insulators. Nucl Instrum Methods B. 2000;903:166.
  • Klaumünzer S. Ion hammering of silica colloids. Nucl Instr Meth B. 2003;215:345.
  • van Dillen T, Polman A, Fukarek W, et al. Energy-dependent anisotropic deformation of colloidal silica particles under MeV Au irradiation. Appl Phys Lett. 2001;78:7.
  • van Dillen T, de Dood MJA, Penninkhof JJ, et al. Ion beam-induced anisotropic plastic deformation of silicon microstructures. Appl Phys Lett. 2004;84:18.
  • Dawi EA, Ismail AH, AbdelKader A, et al. Sputtering of size-tunable oxidized Fe nanoparticles by gas flow method. Appl Phys A. 2020;126:316.
  • Ishii K. Sputter-Deposition of Fe Films in a High Pressure Atmosphere. Jpn J Appl Phys. 1987;26(6):932.
  • Ishii K, Vac J. High‐rate low kinetic energy gas‐flow‐sputtering system. Sci Technol A. 1989;7:256.
  • Jafari A, Farjami Shayesteh S, Salouti M, et al. Effect of annealing temperature on magnetic phase transition in Fe3O4 nanoparticles. J Magn Magn Mater. 2015;379:305–312.
  • Schwaminger SP, Bauer D, Fraga-García P, et al. Oxidation of magnetite nanoparticles: impact on surface and crystal properties. Cryst Eng Comm. 2017;19:246.
  • Rebodos RL, Vikesland PJ. Effects of Oxidation on the Magnetization of Nanoparticulate Magnetite. Langmuir. 2010;26:16745.
  • Simeonidis K, Mourdikoudis S, Tsiaoudis I, et al. Oxidation process of Fe nanoparticles. Mod Phys Lett B. 2007;21(18):1143–1151.
  • Ziegler JF, Biersack JP, Ziegler MD. SRIM, a version of the TRIM program, The stopping and range of ions in matter. 2008. https://www.srim.org
  • Arnoldbik WM, van Emmichoven PAZ, Habraken FHPM. Electronic sputtering of silicon suboxide films by swift heavy ions. Phys Rev Lett. 2005;94:1.
  • Buffat P, Borel J-P. Size effect on the melting temperature of gold particles. Phys Rev A. 1976;13(6):2287–2298.
  • Rizza G, Ramjauny Y, Gacoin T, et al. Chemically synthesized gold nanoparticles embedded in a SiO2 matrix: A model system to give insights into nucleation and growth under irradiation. Phys Rev B. 2007;76:245414.
  • Ridgway MC, Kluth P, Giulian R, et al. Changes in metal nanoparticle shape and size induced by swift heavy-ion irradiation. Nucl Instrum Methods Phys Res B. 2009;267:931.
  • Klaumünzer S. Ion tracks in quartz and vitreous silica. Nucl Instrum Methods Phys Res B. 2004;225:136.
  • Klaumünzer S. Modification of nanostructures by high-energy ion beams. NIMB. 2006;244(1):1.
  • Rizza G, Coulon PE, Khomenkov V, et al. Rational description of the ion-beam shaping mechanism. Phys Rev B. 2012;86:035450.