1,906
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Universal converse flexoelectricity in dielectric materials via varying electric field direction

, &
Pages 107-128 | Received 11 Dec 2020, Accepted 19 Jan 2021, Published online: 04 Mar 2021

References

  • Kogan SM. Piezoelectric effect during inhomogeneous deformation and acoustic scattering of carriers in crystals. Sov Physics-Solid State. 1964;5:2069–2070.
  • Mindlin RD. Polarization gradient in elastic dielectrics. Int J Solids Struct. 1968;4:637–642.
  • Tagantsev AK. Piezoelectricity and flexoelectricity in crystalline dielectrics. Phys Rev B. 1986;34:5883–5889.
  • Ma W, Cross LE. Strain-gradient-induced electric polarization in lead zirconate titanate ceramics. Appl Phys Lett. 2003;82:3293–3295.
  • Ma W, Cross LE. Observation of the flexoelectric effect in relaxor Pb(Mg1/3Nb2/3)O3ceramics. Appl Phys Lett. 2001;78:2920–2921.
  • Ma W, Cross LE. Flexoelectricity of barium titanate. Appl Phys Lett. 2006;88:2001–2004.
  • Ma W, Cross LE. Flexoelectric effect in ceramic lead zirconate titanate. Appl Phys Lett. 2005;86:1–3.
  • Ma W, Cross LE. Flexoelectric polarization of barium strontium titanate in the paraelectric state. Appl Phys Lett. 2002;81:3440–3442.
  • Abdollahi A, Peco C, Millán D, Arroyo M, and I. Arias I. Computational evaluation of the flexoelectric effect in dielectric solids. J. Appl. Phys. 2014;93502.
  • Abdollahi A, Mill D, Peco C, Arroyo M, and I. Arias I. Revisiting pyramid compression to quantify flexoelectricity : a three-dimensional simulation study. Phys. Rev. B 2015;91:104103.
  • Qi Y, Kim J, Nguyen TD, Lisko B, Purohit P.K., and McAlpine M.C. Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons. Nano Lett. 2011;11:1331–1336.
  • Qi L, Huang S, Fu G, et al. On the mechanics of curved flexoelectric microbeams. Int J Eng Sci. 2018;124:1–15.
  • Cross LE. Flexoelectric effects: Charge separation in insulating solids subjected to elastic strain gradients. J. Mater. Sci. 41 2006;1:53–63.
  • Hu S, Li H, Tzou H. Flexoelectric responses of circular rings. J Vib Acoust Trans ASME. 2013;135:1–8.
  • Methods C, Mech A, Ghasemi H, et al. ScienceDirect A level-set based IGA formulation for topology optimization of flexoelectric materials. Comput Methods Appl Mech Eng. 2017;313:239–258.
  • Zhu W, Fu JY, Li N, Cross, L. Piezoelectric composite based on the enhanced flexoelectric effects Piezoelectric composite based on the enhanced flexoelectric effects. Appl. Phys. Lett. 2006;89:192904.
  • Zhang XF, Hu KM and Li H. Comparison of flexoelectric and piezoelectric ring energy harvester. 2018;1–9.
  • Hamdia KM, Ghasemi H, Zhuang X, et al. Computational machine learning representation for the flexoelectricity effect in truncated pyramid structures. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2019;233:3795–3803.
  • Fu JY, Zhu W, Li N, Smith N.B. and Eric Cross L. Gradient scaling phenomenon in microsize flexoelectric piezoelectric composites composites. Appl. Phys. Lett. 91 2007;91:182910.
  • Eremeyev VA, Ganghoffer J-F, Konopińska-Zmysłowska V, et al. Flexoelectricity and apparent piezoelectricity of a pantographic micro-bar. Int J Eng Sci. 2020;149:103213.
  • Mao S, Purohit PK. Insights into flexoelectric solids from strain-gradient elasticity. 2014;81:1–10.
  • Huang W, Kim K, Zhang S, et al. Scaling effect of flexoelectric (Ba,Sr)TiO3 microcantilevers. Phys Status Solidi - Rapid Res Lett. 2011;5:350–352.
  • Wang KF, Wang BL, Zeng S. Analysis of an array of flexoelectric layered nanobeams for vibration energy harvesting. Compos Struct. 2018;187:48–57.
  • Chen X, Xu S, Yao N, et al. 1.6 v nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett. 2010;10:2133–2137.
  • Shu C, Lien IC, Shu YC. Array of piezoelectric energy harvesting by the equivalent impedance approach. Smart Mater Struct. 2012;21:082001.
  • Zubko P, Catalan G, Tagantsev AK. Flexoelectric Effect in Solids. Annu Rev Mater Res. 2013;43:387–421.
  • Qi L. Energy harvesting properties of the functionally graded flexoelectric microbeam energy harvesters. Energy. 2019;171:721–730.
  • Reza Barati M. On non-linear vibrations of flexoelectric nanobeams. Int J Eng Sci. 2017;121:143–153.
  • Wang KF, Wang BL. Non-linear flexoelectricity in energy harvesting. Int J Eng Sci. 2017;116:88–103.
  • Basutkar R. Analytical modelling of a nanoscale series-connected bimorph piezoelectric energy harvester incorporating the flexoelectric effect. Int J Eng Sci. 2019;139:42–61.
  • Majdoub MS, Sharma P, Cagin T. Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect. Phys Rev B - Condens Matter Mater Phys. 2008;77:1–9.
  • Wang B, Yang S, Sharma P. Flexoelectricity as a universal mechanism for energy harvesting from crumpling of thin sheets. Phys Rev B. 2019;100:035438.
  • Deng Q, Kammoun M, Erturk A, et al. International Journal of Solids and Structures Nanoscale flexoelectric energy harvesting À Di v. Int J Solids Struct. 2014;51:3218–3225.
  • Sharma S, Kumar R, Talha M, et al. Strategies to instigate superior electromechanical response in dielectric materials via converse flexoelectricity. Extrem Mech Lett. 2020;42:101138.
  • Zhang S, Liu K, Wen X, et al. Converse flexoelectricity with relative permittivity gradient. Appl Phys Lett. 2019;114:52903.
  • Ebrahimi F, Hosseini SHS. Investigation of flexoelectric effect on nonlinear forced vibration of piezoelectric/functionally graded porous nanocomposite resting on viscoelastic foundation. J Strain Anal Eng Des. 2020;55:53–68.
  • Ahmadpoor F, Sharma P. Flexoelectricity in two-dimensional crystalline and biological membranes. Nanoscale. 2015;7:16555–16570.
  • Sharma S, Kumar A, Kumar R, et al. Geometry independent direct and converse flexoelectric effects in functionally graded dielectrics: an isogeometric analysis. Mech Mater. 2020;148:103456.
  • Sharma S, Kumar R, Talha M, et al. Flexoelectric poling of functionally graded ferroelectric materials. Adv Theory Simul. 2000158.
  • Fu JY, Zhu W, Li N, et al. Experimental studies of the converse flexoelectric effect induced by inhomogeneous electric field in a barium strontium titanate composition. J Appl Phys. 2006;100:24112.
  • Zalesskii VG, Rumyantseva ED. Converse flexoelectric effect in the SrTiO 3 single crystal. Phys. Solid State. 2014;56:1352–1354.
  • Abdollahi A, Arias I. Constructive and destructive interplay between piezoelectricity and flexoelectricity in flexural sensors and actuators. J Appl Mech. 2015;82. DOI:10.1115/1.4031333
  • Mao Y, Ai S, Xiang X, et al. Theory for dielectrics considering the direct and converse flexoelectric effects and its finite element implementation. Appl Math Model. 2016;40:7115–7137.
  • Wu T, Liu K, Zhang S, et al. An actuation method by a biconcave beam structure with converse flexoelectric effect. Smart Mater Struct. 2019;28:115025.
  • Fan M, Tzou H. Vibration control with the converse flexoelectric effect on the laminated beams. J Intell Mater Syst Struct. 2019;30:2556–2566.
  • Liu W, Deng F, Xie S, et al. Electromechanical analysis of direct and converse flexoelectric effects under a scanning probe tip. J Mech Phys Solids. 2020;142:104020.
  • Yan X, Huang W, Kwon SR, et al. A sensor for the direct measurement of curvature based on flexoelectricity. Smart Mater Struct. 2013;22:85016.
  • Tagantsev AK, Yurkov AS. Flexoelectric effect in finite samples. J Appl Phys. 2012;112:044103.