4,605
Views
10
CrossRef citations to date
0
Altmetric
Research Article

3D Printing of Liquid Metal Based Tactile Sensor for Simultaneously Sensing of Temperature and Forces

ORCID Icon, , &
Pages 269-285 | Received 15 Apr 2021, Accepted 23 Jun 2021, Published online: 05 Jul 2021

References

  • Carrico JD, Tyler T, Leang KK. A comprehensive review of select smart polymeric and gel actuators for soft mechatronics and robotics applications: fundamentals, freeform fabrication, and motion control, International. J Smart Nano Mat. 2018;8: 144–213.
  • Luo S, Bimbo J, Dahiya R, et al. Robotic tactile perception of object properties: a review. Mechatronics. 2017;48:54–67.
  • Abd MA, Al-Saidi M, Lin M, et al. Surface Feature Recognition and Grasped Object Slip Prevention With a Liquid Metal Tactile Sensor for a Prosthetic Hand. 2020 8th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob). 2020; 1174–1179.
  • Zhu P, Wang Y, Wang Y, et al. Flexible 3D architectured piezo/thermoelectric bimodal tactile sensor array for E‐skin application. Adv Energy Mater. 2020;10(39):2001945–2001952.
  • Lu W, Yu P, Jian M, et al. Molybdenum disulfide nanosheets aligned vertically on carbonized silk fabric as smart textile for wearable pressure-sensing and energy devices. ACS Appl Mater Interfaces. 2020;12(10):11825–11832.
  • An BW, Heo S, Ji S, et al. Transparent and flexible fingerprint sensor array with multiplexed detection of tactile pressure and skin temperature. Nat Commun. 2018;9(1):2458–2467.
  • Li S, Zhang Y, Wang Y, et al. Physical sensors for skin-inspired electronics. InfoMat. 2020;2(1):184–211.
  • Wang H, Wang H, Wang Y, et al. Laser writing of janus graphene/kevlar textile for intelligent protective clothing. ACS Nano. 2020;14(3):3219–3226.
  • Lu T, Markvicka EJ, Jin Y, et al. Soft-matter printed circuit board with UV laser micropatterning. ACS Applied Mat Interfaces. 2017;9(26):22055–22062.
  • Gao Y, Ota H, Schaler EW, et al. Wearable microfluidic diaphragm pressure sensor for health and tactile touch monitoring. Adv Mater. 2017;29(39):1701985–1701988.
  • Kou H, Zhang L, Tan Q, et al. Wireless wide-range pressure sensor based on graphene/PDMS sponge for tactile monitoring. Sci Rep. 2019;9(1):3916–3922.
  • Rao J, Chen Z, Zhao D, et al. Tactile electronic skin to simultaneously detect and distinguish between temperature and pressure based on a triboelectric nanogenerator. Nano Energy. 2020;75:1–9.
  • Wang Y, Wu X, Mei D, et al. Flexible tactile sensor array for distributed tactile sensing and slip detection in robotic hand grasping. Sens Actuators A. 2019;297:1–13.
  • Wang C, Xia K, Zhang M, et al. An all-silk-derived dual-mode e-skin for simultaneous temperature–pressure detection. ACS Appl Mater Interfaces. 2017;9(45):39484–39492.
  • Dahiya RS, Metta G, Valle M, et al. Tactile sensing—from humans to humanoids. IEEE Trans Rob. 2010;26(1):1–20.
  • Xi KL, Wang YC, Mei DQ, et al., A flexible tactile sensor array based on pressure conductive rubber for three-axis force and slip detection, 2015 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) . 2015;476–481.
  • Wang YC, Wu X, Mei DQ, et al. Flexible tactile sensor array for distributed tactile sensing and slip detection in robotic hand grasping. Sensors and Actuators A: Physical . 2017;29:111512.
  • Oh J, Yang JC, Kim JO, et al. Pressure insensitive strain sensor with facile solution-based process for tactile sensing applications. ACS Nano. 2018;12:7546–7553.
  • Basu J, Basu JK, Bhattacharyya TK. The evolution of graphene-based electronic devices. Int J Smart Nano Mat. 2010;1:201–223.
  • Xia K, Wang C, Jian M, et al. CVD growth of fingerprint-like patterned 3D graphene film for an ultrasensitive pressure sensor. Nano Res. 2017;11:1124–1134.
  • Wang C, Xia K, Wang H, et al. Advanced Carbon for Flexible and Wearable Electronics. Adv Mater. 2019;31:e1801072.
  • Cao K, Yang H, Gao L, et al. In situ mechanical characterization of silver nanowire/graphene hybrids films for flexible electronics. Int J Smart Nano Mat. 2020;11:265–276.
  • Park S, Mondal K, Treadway RM 3rd, et al. Silicones for stretchable and durable soft devices: beyond sylgard-184. ACS Appl Mat Interfaces. 2018;10:11261–11268.
  • Zhang C, Deng H, Xie Y, et al. Stimulus responsive 3D assembly for spatially resolved bifunctional sensors. Small. 2019;15:e1904224.
  • Zhu S, So J-H, Mays R, et al. Ultrastretchable fibers with metallic conductivity using a liquid metal alloy core. Adv Funct Mater. 2013;23:2308–2314.
  • Park J, Wang S, Li M, et al. Three-dimensional nanonetworks for giant stretchability in dielectrics and conductors. Nat Commun. 2012;3:916–923.
  • Shin H-S, Ryu J, Majidi C, et al. Enhanced performance of microfluidic soft pressure sensors with embedded solid microspheres. J Micromech Microeng. 2016;26:025011.
  • Wong RDP, Posner JD, Santos VJ. Flexible microfluidic normal force sensor skin for tactile feedback. Sensors Actuators a-Phys. 2012;179:62–69.
  • White EL, Case JC, Kramer RK. Multi-mode strain and curvature sensors for soft robotic applications. Sensors Actuators a-Phys. 2017;253:188–197.
  • Kim M-G, Alrowais H, Pavlidis S, et al. Size-scalable and high-density liquid-metal-based soft electronic passive components and circuits using soft lithography. Adv Funct Mater. 2017;27:1–11.
  • Ota H, Emaminejad S, Gao Y, et al. Application of 3D printing for smart objects with embedded electronic sensors and systems. Adv Mater Technol. 2016;1:1–8.
  • Zheng Y, He ZZ, Yang J, et al. Personal electronics printing via tapping mode composite liquid metal ink delivery and adhesion mechanism. Sci Rep. 2014;4:1–8.
  • Guo R, Wang X, Chang H, et al. Ni-gain amalgams enabled rapid and customizable fabrication of wearable and wireless healthcare electronics. Adv Eng Mater. 2018;20:1–9.
  • Mohammed MG, Kramer R. All-printed flexible and stretchable electronics. Adv Mater. 2017;29:1604965–1604967.
  • Wang YC, Lu YT, Mei DQ, et al. Liquid metal-based wearable tactile sensor for both temperature and contact force sensing. IEEE Sens J. 2021;21:1694–1703.
  • He Y, Wu Y, Fu J-Z, et al. Developments of 3D printing microfluidics and applications in chemistry and biology: a review. Electroanalysis. 2016;28:1658–1678.
  • Jian M, Zhang Y, Liu Z. Natural biopolymers for flexible sensing and energy devices, Chinese. J Polym Sci. 2020;38:459–490.
  • Uzcategui AC, Muralidharan A, Ferguson VL, et al. Understanding and improving mechanical properties in 3D printed parts using a dual-cure acrylate-based resin for stereolithography. Adv Eng Mater. 2018;20:1800876.
  • Placone JK, Engler AJ. Recent advances in extrusion-based 3D printing for biomedical applications. Adv Healthcare Mat 7. 2018;7(8): 1701161.
  • Tumbleston JR, Shirvanyants D, Ermoshkin N, et al. Continuous liquid interface production of 3D objects. Science. 2015;347:1349–1352.
  • Yeo JC, Yu KJ, Loh KP, et al. Triple-state liquid-based microfluidic tactile sensor with high flexibility, durability, and sensitivity. ACS Sens. 2016;1:543–551.