5,455
Views
8
CrossRef citations to date
0
Altmetric
Review

Advances and prospects of triboelectric nanogenerator for self-powered system

, , &
Pages 233-255 | Received 30 Apr 2021, Accepted 23 Aug 2021, Published online: 24 Oct 2021

References

  • Beeby SP, Torah RN, Tudor MJ, et al. A micro electromagnetic generator for vibration energy harvesting. J Micromech Microeng. 2007;17(7):1257–1265.
  • Kendzi M, Aissaoui A, Abid M, et al. Control of the photoelectric generator for used in feeding of the independent wind turbine system. IJPEDS. 2019;10(3):1613.
  • Roundy S, Wright PK. A piezoelectric vibration based generator for wireless electronics. Smart Mater Struct. 2004;13(5):1131–1142.
  • Tashiro R, Kabei N, Katayama K, et al. Development of an electrostatic generator that harnesses the motion of a living body: Use of a resonant phenomenon. JSME Int. J. Ser. C. 2000;43(4):916–922.
  • Wang X, Zhou J, Song J, et al. Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Lett. 2006;6(12):2768–2772.
  • Wang X, Yang B, Liu J, et al. A transparent and biocompatible single-friction-surface triboelectric and piezoelectric generator and body movement sensor. J Mater Chem A. 2017;5(3):1176–1183.
  • Chen H, Xu Y, Zhang J, et al. Self-powered flexible blood oxygen monitoring system based on a triboelectric nanogenerator. Nanomaterials. 2019;9(5):778.
  • Song Y, Min J, Yu Y, et al. Wireless battery-free wearable sweat sensor powered by human motion. Sci Adv. 2020;6(40):eaay9842.
  • He X, Zou H, Geng Z, et al. A hierarchically nanostructured cellulose fiber-based triboelectric nanogenerator for self-powered healthcare products. Adv Funct Mater. 2018;28(45):1805540.
  • Yao G, Kang L, Li J, et al. Effective weight control via an implanted self-powered vagus nerve stimulation device. Nat Commun. 2018;9(1):5349.
  • Fan C, Wu C, Wen G, et al. Development of self-powered bubble velocity sensor for gas–liquid two-phase flow based on triboelectric nanogenerator. Nanotechnology. 2020;32(8):085503.
  • Cheng R, Dong K, Liu L, et al. Flame-retardant textile-based triboelectric nanogenerators for fire protection applications. ACS Nano. 2020;14(11):15853–15863.
  • Wang ZL. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano. 2013;7(11):9533–9557.
  • Chen C, Zhu Y, Tian M, et al. Sustainable self-powered electro-Fenton degradation using N, S co-doped porous carbon catalyst fabricated with adsorption-pyrolysis-doping strategy. Nano Energy. 2021;81:105623.
  • Yang Y, Pradel KC, Jing Q, et al. Thermoelectric nanogenerators based on single Sb-doped ZnO micro/nanobelts. ACS Nano. 2012;6(8):6984–6989.
  • Dudem B, Ko YH, Leem JW, et al. Highly transparent and flexible triboelectric nanogenerators with subwavelength-architectured polydimethylsiloxane by a nanoporous anodic aluminum oxide template. ACS Appl Mater Interfaces. 2015;7(37):20520–20529.
  • Lin Z, Chen J, Yang J. Recent progress in triboelectric nanogenerators as a renewable and sustainable power source. J Nanomater. 2016;(2016):5651613.
  • Rathore S, Sharma S, Swain B. A critical review on triboelectric nanogenerator. IOP Conf Ser Mater Sci Eng. 2018;377:012186.
  • Wang Z, Lin L, Niu S, et al. Triboelectric nanogenerators. Cham: Springer International Publishing; 2016.
  • Sun Q-J, Lei Y, Zhao X-H, et al. Scalable fabrication of hierarchically structured graphite/polydimethylsiloxane composite films for large-area triboelectric nanogenerators and self-powered tactile sensing. Nano Energy. 2021;80:105521.
  • Wu X, Zhu J, Evans JW, et al. A single-mode, self-adapting, and self-powered mechanoreceptor based on a potentiometric–triboelectric hybridized sensing mechanism for resolving complex stimuli. Adv Mater. 2020;32(50):2005970.
  • Al Asbahi AAMH, Fang Z, Chandio ZA, et al. Assessing barriers and solutions for Yemen energy crisis to adopt green and sustainable practices: a fuzzy multi-criteria analysis. Environ Sci Pollut Res. 2020;27(29):36765–36781.
  • Phillips DF. The energy crisis. Hospitals. 1973;47:56–59.
  • Zhang C, Peng Z, Huang C, et al. High-energy all-in-one stretchable micro-supercapacitor arrays based on 3D laser-induced graphene foams decorated with mesoporous ZnP nanosheets for self-powered stretchable systems. Nano Energy. 2021;81:105609.
  • Lim T, Tang T, Bowen WM. The impact of intergovernmental grants on innovation in clean energy and energy conservation: evidence from the American recovery and reinvestment act. Energy Policy. 2021;148:111923.
  • Qiao H, Huang Z, Ren X, et al. Self-powered photodetectors based on 2D materials. Adv Opt Mater. 2020;8(1):1900765.
  • Zhu M, Yi Z, Yang B, et al. Making use of nanoenergy from human – nanogenerator and self-powered sensor enabled sustainable wireless IoT sensory systems. Nano Today. 2021;36:101016.
  • Fan F-R, Tian Z-Q, Lin Wang Z. Flexible triboelectric generator. Nano Energy. 2012;1(2):328–334.
  • Sripadmanabhan Indira S, Aravind Vaithilingam C, Oruganti KSP, et al. Nanogenerators as a sustainable power source: state of art, applications, and challenges. Nanomaterials. 2019;9(5):773.
  • Goldoni R, Ozkan-Aydin Y, Kim Y-S, et al. Stretchable Nanocomposite sensors, nanomembrane interconnectors, and wireless electronics toward feedback–loop control of a soft earthworm robot. ACS Appl Mater Interfaces. 2020;12(39):43388–43397.
  • Xu F, Li X, Shi Y, et al. Recent developments for flexible pressure sensors: a review. Micromachines. 2018;9(11):580.
  • Sommerville R, Zhu P, Rajaeifar MA, et al. A qualitative assessment of lithium ion battery recycling processes. Resour. Conserv. Recy. 2021;165:105219.
  • Pan M, Yuan C, Liang X, et al. Triboelectric and piezoelectric nanogenerators for future soft robots and machines. iScience. 2020;23(11):101682.
  • Wu H, Chen Z, Xu G, et al. Fully biodegradable water droplet energy harvester based on leaves of living plants. ACS Appl Mater Interfaces. 2020;12(50):56060–56067.
  • Cheng X, Miao L, Su Z, et al. Controlled fabrication of nanoscale wrinkle structure by fluorocarbon plasma for highly transparent triboelectric nanogenerator. Microsyst. Nanoeng. 2017;3(1):16074.
  • Wu Z, Cheng T, Wang ZL. Self-powered sensors and systems based on nanogenerators. Sensors. 2020;20(10):2925.
  • Pang Y, Chen S, Chu Y, et al. Matryoshka-inspired hierarchically structured triboelectric nanogenerators for wave energy harvesting. Nano Energy. 2019;66:104131.
  • Fu X, Mo X. Review: The application of wearable sensors on the diagnosis and monitoring of parkinson’s disease. 2018 3rd International Conference on Automation, Mechanical and Electrical Engineering (AMEE, 2018), 2018; pp. 249-254.
  • Jegan R, Anusuya KV. Biosensor-based feature extraction and physiological parameters measurement for biomedical applications. IJBET. 2018;28(1):67–80.
  • Wang J, Li S, Yi F, et al. Sustainably powering wearable electronics solely by biomechanical energy. Nat Commun. 2016;7(1):12744.
  • Deng C, Tang W, Liu L, et al. Self -powered insole plantar pressure mapping system. Adv Funct Mater. 2018;28(29):1801606.
  • Liu L, Tang W, Deng C, et al. Self-powered versatile shoes based on hybrid nanogenerators. Nano Res. 2018;11(8):3972–3978.
  • Jao Y-T, Yang P-K, Chiu C-M, et al. A textile-based triboelectric nanogenerator with humidity-resistant output characteristic and its applications in self-powered healthcare sensors. Nano Energy. 2018;50:513–520.
  • Chen X, Parida K, Wang J, et al. A stretchable and transparent nanocomposite nanogenerator for self-powered physiological monitoring. ACS Appl Mater Interfaces. 2017;9(48):42200–42209.
  • Dong K, Wu Z, Deng J, et al. A stretchable yarn embedded triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and multifunctional pressure sensing. Adv Mater. 2018;30(43):1804944.
  • Chen J, Huang Y, Zhang N, et al. Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nat. Energy. 2016;1(10):16138.
  • Moulaei K, Malek M, Sheikhtaheri A. A smart wearable device for monitoring and self-management of diabetic foot: a proof of concept study. Int. J. Med. Inf. 2021;146:104343.
  • Munusamy T, Karuppiah R, Bahuri NFA, et al. Telemedicine via smart glasses in critical care of the neurosurgical patient—COVID-19 pandemic preparedness and response in neurosurgery. World Neurosurg. 2021;145:e53–e60.
  • Wang S, Tai H, Liu B, et al. A facile respiration-driven triboelectric nanogenerator for multifunctional respiratory monitoring. Nano Energy. 2019;58:312–321.
  • Ghatak B, Banerjee S, Ali SB, et al. Design of a self-powered triboelectric face mask. Nano Energy. 2021;79:105387.
  • Li S, Meng X, Yi Q, et al. Structural and electrochemical properties of LiMn0.6Fe0.4PO4 as a cathode material for flexible lithium-ion batteries and self-charging power pack. Nano Energy. 2018;52:510–516.
  • Bocchetta P, Frattini D, Ghosh S, et al. Soft materials for wearable/flexible electrochemical energy conversion, storage, and biosensor devices. Materials. 2020;13(12):2733.
  • Sim K, Ershad F, Zhang Y, et al. An epicardial bioelectronic patch made from soft rubbery materials and capable of spatiotemporal mapping of electrophysiological activity. Nat. Electron. 2020;3(12):775–784.
  • Li J, Kang L, Long Y, et al. Implanted battery-free direct-current micro-power supply from in vivo breath energy harvesting. ACS Appl Mater Interfaces. 2018;10(49):42030–42038.
  • Arab Hassani F, Mogan RP, Gammad GGL, et al. Toward self-control systems for neurogenic underactive bladder: a triboelectric nanogenerator sensor integrated with a bistable micro-actuator. ACS Nano. 2018;12(4):3487–3501.
  • Lee S, Wang H, Xian Peh WY, et al. Mechano-neuromodulation of autonomic pelvic nerve for underactive bladder: a triboelectric neurostimulator integrated with flexible neural clip interface. Nano Energy. 2019;60:449–456.
  • Ibrahim A, Jain M, Salman E, et al. A smart knee implant using triboelectric energy harvesters. Smart Mater Struct. 2019;28(2):025040.
  • Liu J, Jiang T, Li X, et al. Triboelectric filtering for air purification. Nanotechnology. 2019;30(29):292001.
  • Lin Z-H, Zhu G, Zhou YS, et al. A self-powered triboelectric nanosensor for mercury ion detection. Angew Chem Int Ed. 2013;52(19):5065–5069.
  • Gu GQ, Han CB, Tian JJ, et al. Triboelectric nanogenerator enhanced multilayered antibacterial nanofiber air filters for efficient removal of ultrafine particulate matter. Nano Res. 2018;11(8):4090–4101.
  • Wang P, Pan L, Wang J, et al. An ultra-low-friction triboelectric–electromagnetic hybrid nanogenerator for rotation energy harvesting and self-powered wind speed sensor. ACS Nano. 2018;12(9):9433–9440.
  • Huang Y. Research on hydrodynamic characteristics of wave energy power plant. J Phys Conf Ser. 2020;1634:012144.
  • Uchiyama T, Takamure K, Okuno Y, et al. Development of a self-powered wireless sensor node to measure the water flowrate by using a turbine flowmeter. Internet Things. 2021;13:100327.
  • Xiao TX, Liang X, Jiang T, et al. Spherical triboelectric nanogenerators based on spring-assisted multilayered structure for efficient water wave energy harvesting. Adv Funct Mater. 2018;28(35):1802634.
  • Xu L, Jiang T, Lin P, et al. Coupled triboelectric nanogenerator networks for efficient water wave energy harvesting. ACS Nano. 2018;12(2):1849–1858.
  • Xiao TX, Jiang T, Zhu JX, et al. Silicone-based triboelectric nanogenerator for water wave energy harvesting. ACS Appl Mater Interfaces. 2018;10(4):3616–3623.
  • Chen BD, Tang W, He C, et al. Water wave energy harvesting and self-powered liquid-surface fluctuation sensing based on bionic-jellyfish triboelectric nanogenerator. Mater Today. 2018;21(1):88–97.
  • Xu M, Wang S, Zhang SL, et al. A highly-sensitive wave sensor based on liquid-solid interfacing triboelectric nanogenerator for smart marine equipment. Nano Energy. 2019;57:574–580.
  • Xi Y, Wang J, Zi Y, et al. High efficient harvesting of underwater ultrasonic wave energy by triboelectric nanogenerator. Nano Energy. 2017;38:101–108.
  • An S, Sankaran A, Yarin AL. Natural biopolymer-based triboelectric nanogenerators via fast, facile, scalable solution blowing. ACS Appl Mater Interfaces. 2018;10(43):37749–37759.
  • Feng Y, Zhang L, Zheng Y, et al. Leaves based triboelectric nanogenerator (TENG) and TENG tree for wind energy harvesting. Nano Energy. 2019;55:260–268.
  • Su Q, Quan Q, Deng J, et al. A quadruped micro-robot based on piezoelectric driving. Sensors. 2018;18(3):810.
  • Zhong T, Li H, Zhao T, et al. Self-powered/self-cleaned atmosphere monitoring system from combining hydrovoltaic, gas sensing and photocatalytic effects of TiO2 nanoparticles. J Mater Sci Technol. 2021;76:33–40.
  • Zhou YS, Zhu G, Niu S, et al. Nanometer resolution self-powered static and dynamic motion sensor based on micro-grated triboelectrification. Adv Mater. 2014;26(11):1719–1724.
  • Zi Y, Wu C, Ding W, et al. Maximized effective energy output of contact-separation-triggered triboelectric nanogenerators as limited by air breakdown. Adv Funct Mater. 2017;27(24):1700049.
  • Wang J, Wu C, Dai Y, et al. Achieving ultrahigh triboelectric charge density for efficient energy harvesting. Nat Commun. 2017;8(1):88.
  • Yang J, Chen J, Yang Y, et al. Broadband vibrational energy harvesting based on a triboelectric nanogenerator. Adv Energy Mater. 2014;4(6):1301322.
  • Xu M, Wang P, Wang Y-C, et al. A soft and robust spring based triboelectric nanogenerator for harvesting arbitrary directional vibration energy and self-powered vibration sensing. Adv Energy Mater. 2018;8(9):1702432.
  • Chen B, Tang W, Jiang T, et al. Three-dimensional ultraflexible triboelectric nanogenerator made by 3D printing. Nano Energy. 2018;45:380–389.
  • Deng J, Kuang X, Liu R, et al. Vitrimer elastomer-based jigsaw puzzle-like healable triboelectric nanogenerator for self-powered wearable electronics. Adv Mater. 2018;30(14):1705918.
  • Cheng G, Lin Z-H, Lin L, et al. Pulsed nanogenerator with huge instantaneous output power density. ACS Nano. 2013;7(8):7383–7391.
  • Zhao J, Zhen G, Liu G, et al. Remarkable merits of triboelectric nanogenerator than electromagnetic generator for harvesting small-amplitude mechanical energy. Nano Energy. 2019;61:111–118.
  • Xiong J, Thangavel G, Wang J, et al. Self-healable sticky porous elastomer for gas-solid interacted power generation. Sci Adv. 2020;6(29):eabb4246.
  • Zhu G, Lin Z-H, Jing Q, et al. Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett. 2013;13(2):847–853.
  • Zhou Y, Deng W, Xu J, et al. Engineering materials at the nanoscale for triboelectric nanogenerators. Cell Rep. Phys. Sci. 2020;1(8):100142.
  • Tang W, Jiang T, Fan FR, et al. Liquid-metal electrode for high-performance triboelectric nanogenerator at an instantaneous energy conversion efficiency of 70.6%. Adv Funct Mater. 2015;25(24):3718–3725.
  • Ahmed A, Hassan I, Pourrahimi AM, et al. Toward high-performance triboelectric nanogenerators by engineering interfaces at the nanoscale: looking into the future research roadmap. Adv Mater Technol. 2020;5(11):2000520.
  • Han Y, Han Y, Zhang X, et al. Fish gelatin based triboelectric nanogenerator for harvesting biomechanical energy and self-powered sensing of human physiological signals. ACS Appl Mater Interfaces. 2020;12(14):16442–16450.