2,707
Views
1
CrossRef citations to date
0
Altmetric
Research Article

A bio-inspired 3D metamaterials with chirality and anti-chirality topology fabricated by 4D printing

ORCID Icon, , , ORCID Icon &
Pages 1-20 | Received 29 Apr 2022, Accepted 26 Aug 2022, Published online: 14 Sep 2022

References

  • Nimbolkar A, Kumar H, Kumar G. Alternatives to metamaterial based antennas for gain and bandwidth enhancement. IETE J Res. 2021;1–7. DOI:10.1080/03772063.2021.1886878
  • Mrf A, Sg A, Zv B. Solute concentration sensing in two aqueous solution using an optical metamaterial sensor-ScienceDirect. J Lumin. 2021;230:117734.
  • Elenk E, Tokan, Turker Tokan N. Frequency scanning conformal sensor based on SIW metamaterial antenna. IEEE Sens J. 2021;21(14):16015–16023.
  • Vineetha K, Kumar M, Madhav B, et al. Flexible and conformal metamaterial based microwave absorber for WLAN, Wi-MAX and ISM band applications. Mater Technol. 2021 37(8) ;592–609.
  • Wang H, Yan B, Jin H, et al. Perfect absorber with separated ‘dielectric–metal–ground’ metamaterial structure. J Phys D Appl Phys. 2021;54(22):225105.
  • Zhang Y, Yi Z, Wang X, et al. Dual band visible metamaterial absorbers based on four identical ring patches. Physica E. 2020;127:114526.
  • Vellucci S, Monti A, Barbuto M, et al. Progress and perspective on advanced cloaking metasurfaces: from invisibility to intelligent antennas. EPJ Appl Metamateria. 2021;8(7).
  • Chen P, Haberman M, Ghattas O. Optimal design of acoustic metamaterial cloaks under uncertainty. J Comput Phys. 2021;431:110114.
  • Malléjac M, Merkel A, Sánchez-Dehesa J, et al. Experimental evidence of a hiding zone in a density-near-zero acoustic metamaterial. J Appl Phys. 2021;129(14):145101.
  • Hajati Y, Marbouieh S, Sabaeian M. Tunable far-infrared hyperbolic metamateial based on graphene-polar dielectric. Physica E. 2020;128:114534.
  • Boccaccio M, Fierro G, Bucciarelli F, et al. Multi-tonal subwavelength metamaterial for absorption and amplification of acoustic and ultrasonic waves. Eng Res Exp. 2021;3(2):025024.
  • Wang J, Lang T, Hong Z, et al. Design and fabrication of a triple-band terahertz metamaterial absorber. Nanomaterials. 2021;11(5):1110.
  • Xin X, Liu L, Liu Y, et al. 4D printing auxetic metamaterials with tunable, programmable, and reconfigurable mechanical properties. Adv Funct Mater. 2020;30:2004226.
  • Mizzi L, Salvati E, Spaggiari A, et al. 2D auxetic metamaterials with tuneable micro-/nanoscale apertures. Appl Mater Today. 2020;20:100780.
  • Raghunath G, Flatau A, Wang H, et al. Magnetoelastic auxetic‐like behavior in Galfenol: experimental data and simulations. Phys Status Solidi B. 2016;253(7):1440–1448.
  • Fb A, Cgj B, Pp A. Hard auxetic metamaterials. Extreme Mech Lett. 2020;40:100980.
  • Ren X, Das R, Tran P, et al. Auxetic metamaterials and structures: a review. Smart Mater Struct. 2018;27(2):023001.
  • Saxena K, Das R, Calius E. Three decades of auxetics research-materials with negative Poisson’s ratio: a review. Adv Eng Mater. 2016;18(11):1847–1870.
  • Shen J, Zhou S, Huang X, et al. Simple cubic three‐dimensional auxetic metamaterials. Phys Status Solidi B. 2014;251(8):1515–1522.
  • Ren X, Shen J, Ghaedizadeh A, et al. Experiments and parametric studies on 3D metallic auxetic metamaterials with tuneable mechanical properties. Smart Mater Struct. 2015;24(9):095016.
  • Ren X, Shen J, Tran P, et al. Design and characterisation of a tuneable 3D buckling-induced auxetic metamaterial. Mater Design. 2018;139:336–342.
  • Novak N, Vesenjak M, Ren Z. Auxetic cellular materials-a review. Stroj vestn-J Mech E. 2016;62(9):485–493.
  • Prall D, Lakes R. Properties of a chiral honeycomb with a Poisson’s ratio of −1. Int J Mech Sci. 1997;39(3):305–314.
  • Liu X, Huang G, Hu G. Chiral effect in plane isotropic micropolar elasticity and its application to chiral lattices. J Mech Phys Solids. 2012;60(11):1907–1921.
  • Frenzel T, Kadic M, Wegener M. Three-dimensional mechanical metamaterials with a twist. Science. 2017;358(6366):1072–1074.
  • Duan S, Wen W, Fang D. A predictive micropolar continuum model for a novel three-dimensional chiral lattice with size effect and tension-twist coupling behavior. J Mech Phys Solids. 2018;121:23–46.
  • Ha C, Plesha M, Lakes R. Chiral three-dimensional lattices with tunable Poisson’s ratio. Smart Mater Struct. 2016;25(5):054005. .
  • Qi D, Zhang P, Wu W, et al. Innovative 3D chiral metamaterials under large deformation: theoretical and experimental analysis. Int J Struct. 2020;202:787–797.
  • Mizzi L, Spaggiari A. Chiralisation of Euclidean polygonal tessellations for the design of new auxetic metamaterials. Mech Mater. 2021;153(80):103698.
  • Mizzi L, Spaggiari A. Novel chiral honeycombs based on octahedral and dodecahedral Euclidean polygonal tessellations. Int J Struct. 2022;238:111428.
  • Tarnai T, Fowler P, Guest S, et al. Equiauxetic hinged archimedean tilings. Symmetry. 2022;14:232.
  • Wu W, Qi D, Liao H, et al. Deformation mechanism of innovative 3D chiral metamaterials. Sci Rep. 2018;8(1):12575.
  • Wu W, Hu W, Qian G, et al. Mechanical design and multifunctional applications of chiral mechanical metamaterials: a review. Mater Design. 2019;180:107950.
  • Zhao W, Zhu J, Liu LW, et al. Analysis of small-scale topology and macroscale mechanical properties of shape memory chiral-lattice metamaterials. Compos Struct. 2021;262:113569.
  • Wang X, Wang Y, Yang H, et al. Assembled molecular face-rotating polyhedra to transfer chirality from two to three dimensions. Nat Commun. 2016;7:12469.
  • Yeung C, Yim K, Wong H, et al. Chiral transcription in self-assembled tetrahedral Eu4L6 chiral cages displaying sizable circularly polarized luminescence. Nat Commun. 2017;8(1):1128.
  • Zhao W, Huang Z, Liu L, et al. Bionic design and performance research of tracheal stent based on shape memory polycaprolactone. Compos Sci Technol. 2022;229(): 109671.
  • Zhao W, Zhang F, Leng J, et al. Personalized 4D printing of bioinspired tracheal scaffold concept based on magnetic stimulated shape memory composites, Compos. Sci Technol. 2019;184:107866.
  • Zhang F, Wen N, Wang L, et al. Design of 4D printed shape-changing tracheal stent and remote controlling actuation. Int J Smart Nano Mat. 2021;12(4):375–389.
  • Zhao F, Zheng X, Zhou S, et al. Constitutive model for epoxy shape memory polymer with regulable phase transition temperature. Int J Smart Nano Mat. 2021;12(1):72–87.
  • Zhao W, Huang Z, Liu L, et al. Porous bone tissue scaffold concept based on shape memory PLA/Fe3O4. Compos Sci Technol. 2021;205:108563.
  • Zhao W, Liu L, Leng J, et al. Thermo-mechanical behavior prediction of shape memory polymers based on multiplicative decompositions of the deformation gradient. Mech Mater. 2020;143:103263.
  • Zhao W, Liu L, Leng J, et al. Thermo-mechanical behavior prediction of carbon nanotube reinforced shape memory polymer composite. Compos Part B-Eng. 2019;179:107455.
  • Zhao W, Li N, Liu L, et al. Origami derived self-assembly stents fabricated via 4D printing. Compos Struct. 2022;293:115669.