1,416
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Solid–liquid contact TENG using a melting near-field direct writing PCL nano-fiber structure

, , &
Pages 90-102 | Received 03 Jun 2022, Accepted 10 Jan 2023, Published online: 24 Jan 2023

References

  • Frfa B, Zqt B, Zhong L. Flexible triboelectric generator[J]. Nano Energy. 2012;1(2):328–334.
  • Lináwang Z. Triboelectric nanogenerators as new energy technology and self-powered sensors–Principles, problems and perspectives[J]. Faraday Discuss. 2014;176:447–458.
  • Liu Y, Zheng Y, Wu Z, et al. Conductive elastic sponge-based triboelectric nanogenerator (TENG) for effective random mechanical energy harvesting and ammonia sensing[J]. Nano Energy. 2021;79:105422.
  • Ravi Kumar CM. Shahriar, Jee Hwan Ahn, et al. Nano Energy. 2019;65:2211–2855.
  • Yfa B, Lza C, Yza B, et al. Leaves based triboelectric nanogenerator (TENG)and TENG tree for wind energy harvesting[J]. Nano Energy. 2019;55:260–268.
  • Zhang D, Shi J, Si Y, et al. Multi-grating triboelectric nanogenerator for harvesting low-frequency ocean wave energy[J]. Nano Energy. 2019;61:132–140.
  • Nguyen V, Zhu R, Yang R. Environmental effects on nanogenerators[J]. Nano Energy. 2015;14:49–61.
  • Nguyen V, Yang R. Effect of humidity and pressure on the triboelectric nanogenerator[J]. Nano Energy. 2013; 2(5):604–608.
  • Nguyen V, Zhu R, Yang R. Rusen Yang,Environmental effects on nanogenerators[J]. Nano Energy. 2015;14(49–61):2211–2855.
  • Lin S, Xu L, Xu C, et al. Electron transfer in nanoscale contact electrification: effect of temperature in the metal–dielectric case[J]. Adv Mater. 2019;31(17):1808197.
  • Yuxiang W, Yusheng L, Zou Y, et al. A multi-mode triboelectric nanogenerator for energy harvesting and biomedical monitoring, [J]. Nano Energy. 2022;92(106715):2211–2855.
  • Wang C, Liang J, Zhao Y, et al. All-solid-state lithium batteries enabled by sulfide electrolytes: from fundamental research to practical engineering design. Energy Environmental Science. 2021;14(5):2577–2619.
  • Zou Y, Tan P, Shi B, et al. A bionic stretchable nanogenerator for underwater sensing and energy harvesting. Nature Communications. n.d.;10(1). DOI:10.1038/s41467-019-10433-4
  • Yan X, Xu W, Deng Y, et al. Bubble energy generator. Sci Adv. 2022;8(25):7698.
  • Xu W, Wang Z. Fusion of slippery interfaces and transistor-inspired architecture for water kinetic energy harvesting. Joule. 2020;4(12):2527–2531.
  • Xu W, Zheng H, Liu Y, et al. A droplet-based electricity generator with high instantaneous power density. Nature. 2020;578(7795):392–396.
  • Zhu P, Zhang B, Wang H, et al. 3D printed triboelectric nanogenerator as self-powered human-machine interactive sensor for breathing-based language expression. 2022;15(8):7460–7467.
  • Xiang S, Liu D, Jiang C, et al. Liquid-metal-based dynamic thermoregulating and self-powered electronic skin. Adv Funct Mater. 2021;31(26):2100940.
  • Tang Y, Zhou H, Sun X, et al. Triboelectric touch-free screen sensor for noncontact gesture recognizing. Adv Funct Mater. 2020;30(5):1907893.
  • Ev A, Mt B, Sr C. Boosted output performance of nanocellulose-based triboelectric nanogenerators via device engineering and surface functionalization[J]. Carbohydr Polym. 2021;266:118120.
  • Kim SM. Effects of surface density of states N_S(E) on the number of effective triboelectric phonons in triboelectric nanogenerators (TENGs): an analytical and numerical study[J]. Mat Sci Eng. 2019;246(JUL.):76–79.
  • Nie S, Fu Q, Lin X, et al. Enhanced performance of a cellulose nanofibrils-based triboelectric nanogenerator by tuning the surface polarizability and hydrophobicity[J]. Chem Eng J. 2021;404:126512.
  • Qian TA, Xp A, Qz A, et al. A strategy to promote efficiency and durability for sliding energy harvesting by designing alternating magnetic stripe arrays in triboelectric nanogenerator[J]. Nano Energy. 2019;66:104087.
  • Muthu M, Pandey R, Wang X, et al. Enhancement of triboelectric nanogenerator output performance by laser 3D-Surface pattern method for energy harvesting application[J]. Nano Energy. 2020;78:105205.
  • Yu Y, Wang X. Chemical modification of polymer surfaces for advanced triboelectric nanogenerator development[J]. Extreme Mech Lett. 2016;9:514–530.
  • Patnam H, Dudem B, Graham SA, et al. High-performance and robust triboelectric nanogenerators based on optimal microstructured poly(vinyl alcohol) and poly(vinylidene fluoride) polymers for self-powered electronic applications[J]. Energy. 2021;223:120031.
  • Xi Y, Zhang F, Shi Y. Effects of surface micro-structures on capacitances of the dielectric layer in triboelectric nanogenerator: a numerical simulation study[J]. Nano Energy. 2021;79:105432.
  • Huang J, Xianpeng F, Liu G, et al. Micro/nano-structures-enhanced triboelectric nanogenerators by femtosecond laser direct writing. Nano Energy. 2019;62:638–644.
  • Tang Q, Pu X, Zeng Q, et al. A strategy to promote efficiency and durability for sliding energy harvesting by designing alternating magnetic stripe arrays in triboelectric nanogenerator[J]. Nano Energy. 2019;66:104087.
  • Muthu M, Pandey R, Wang X, et al. Enhancement of triboelectric nanogenerator output performance by laser 3D-Surface pattern method for energy harvesting application[J]. Nano Energy. 2020;78:105205.
  • Yu Y, Wang X. Chemical modification of polymer surfaces for advanced triboelectric nanogenerator development[J]. Extreme Mech Lett. 2016;9:514–530.
  • Patnam H, Dudem B, Graham SA, et al. High-performance and robust triboelectric nanogenerators based on optimal microstructured poly (vinyl alcohol) and poly (vinylidene fluoride) polymers for self-powered electronic applications[J]. Energy. 2021;223:120031.
  • Vandencasteele N, Reniers F. Plasma-modified polymer surfaces: characterization using XPS[J]. J Electron Spectros Relat Phenomena. 2010;178:394–408.
  • Sundriyal P, Sahu M, Prakash O, et al. Long-term surface modification of PEEK polymer using plasma and PEG silane treatment[J]. Surf Interfaces. 2021;25:101253.
  • Sourisseau C. Polarization measurements in macro- and micro-Raman spectroscopies: molecular orientations in thin films and azo-dye containing polymer systems. Chem Rev. 2004;104(9):3851–3891.
  • Lin S, Xu L, Xu, C, et al. Electron transfer in nanoscale contact electrification: effect of temperature in the metal-dielectric case.[J]. Adv Mater. 2019; 31(17): 1808197.
  • Han Q, Ding Z, Sun W; Han Q, Ding Z, Sun W, et al. Hybrid triboelectric-electromagnetic generator for self-powered wind speed and direction detection[J]. Sustainable Energy Technol Assess. 2020;39:100717.
  • Sohn A, Lee JH, Yoon H-J, et al. Self-boosted power generation of triboelectric nanogenerator with glass transition by friction heat[J]. Nano Energy. 2020;74:2211–2855.
  • Wang S, Xie Y, Niu S, et al. Freestanding triboelectric‐layer‐based nanogenerators for harvesting energy from a moving object or human motion in contact and non‐contact modes[J]. Adv Mater. 2014;26(18):2818–2824.