985
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Optimal alignment for maximizing the uniaxial modulus of 2D anisotropic random nanofiber networks

, , , , &
Pages 122-138 | Received 04 Dec 2022, Accepted 08 Feb 2023, Published online: 22 Feb 2023

References

  • Long G, Jin, WL, Xia, F, et al. Carbon nanotube-based flexible high-speed circuits with sub-nanosecond stage delays. Nat Commun. 2022;13(1):6734
  • Jiang XW, Wang Z, Lu SW, et al. Vibration monitoring for composite structures using buckypaper sensors arrayed by flexible printed circuit. Int J Smart Nano Mater. 2021;12(2):198–217.
  • Yan T, Wu Y, Tang J, et al. Flexible strain sensors fabricated using aligned carbon nanofiber membranes with cross-stacked structure for extensive applications. Int J Smart Nano Mater. 2022;13(3):432–446.
  • Hu N, Masuda Z, Yan C, et al. The electrical properties of polymer nanocomposites with carbon nanotube fillers. Nanotechnology. 2008;19(21):215701.
  • Foroughi J, Spinks GM, Wallace GG, et al. Torsional carbon nanotube artificial muscles. Science. 2011;334(6055):494–497.
  • Liu X, Ji H, Liu B, et al. All-solid-state carbon-nanotube-fiber-based finger-muscle and robotic gripper. Int J Smart Nano Mater. 2022;13(1):64–78.
  • Kang I, Schulz MJ, Kim JH, et al. A carbon nanotube strain sensor for structural health monitoring. Smart Mater Struct. 2006;15(3):737.
  • Zhu W, Ku D, Zheng JP, et al. Buckypaper-based catalytic electrodes for improving platinum utilization and PEMFC’s performance. Electrochim Acta. 2010;55(7):2555–2560.
  • Herasati S, Zhang L. A new method for characterizing and modeling the waviness and alignment of carbon nanotubes in composites. Compos Sci Technol. 2014;100(21):136–142.
  • Stylianopoulos T, Bashur CA, Goldstein AS, et al. Computational predictions of the tensile properties of electrospun fibre meshes: effect of fibre diameter and fibre orientation. J Mech Behav Biomed Mater. 2008;1(4):326–335.
  • Jiang X, Gong W, Qu S, et al. Understanding the influence of single-walled carbon nanotube dispersion states on the microstructure and mechanical properties of wet-spun fibers. Carbon. 2020;169:17–24.
  • Firooz S, Steinmann P, Javili A. Homogenization of composites with extended general interfaces: comprehensive review and unified modeling. Appl Mech Rev. 2021;73(4). DOI: 10.1115/1.4050700
  • Khan SU, Pothnis JR, Kim J-K. Effects of carbon nanotube alignment on electrical and mechanical properties of epoxy nanocomposites. Compos Part A Appl Sci Manuf. 2013;49:26–34.
  • Wang Q, Dai J, Li W, et al. The effects of CNT alignment on electrical conductivity and mechanical properties of SWNT/epoxy nanocomposites. Compos Sci Technol. 2008;68(7–8):1644–1648.
  • Ma D, Giglio M, Manes A. An investigation into mechanical properties of the nanocomposite with aligned CNT by means of electrical conductivity. Compos. Sci. Technol. 2020;188:107993.
  • Moaseri E, Karimi M, Baniadam M, et al. Improvements in mechanical properties of multi-walled carbon nanotube-reinforced epoxy composites through novel magnetic-assisted method for alignment of carbon nanotubes. Compos Part A Appl Sci Manuf. 2014;64:228–233.
  • Sun X, Chen T, Yang Z, et al. The Alignment of Carbon Nanotubes: an Effective Route To Extend Their Excellent Properties to Macroscopic Scale. Accounts Chem Res. 2013;46(2):539–549.
  • Yook SH, Kim Y, Kim Y. Conductivity of stick percolation clusters with anisotropic alignments. J Korean Phys Soc. 2015;61(8):1257–1262.
  • White SI, Didonna BA, Mu M, et al. Simulations and electrical conductivity of percolated networks of finite rods with various degrees of axial alignment. Phys Rev B. 2009;79(2):024301(1–6).
  • Du F, Fischer JE, Winey KI. Effect of nanotube alignment on percolation conductivity in carbon nanotube/polymer composites. Phys Rev B. 2005;72(12):121404.
  • Behnam A, Jing G, Ural A. Effects of nanotube alignment and measurement direction on percolation resistivity in single-walled carbon nanotube films. J Appl Phys. 2007;102(4):44313.
  • Pan F, Zhang F, Chen Y, et al. In-plane and out-of-plane stiffness of 2D random fiber networks: Micromechanics and non-classical stiffness relation. Extreme Mech Lett. 2020;36:5.
  • Pan F, Chen Y, Qin Q. Stiffness thresholds of buckypapers under arbitrary loads. Mech Mater. 2016;96:151–168.
  • Pan F, Chen Y, Liu Y, et al. Out-of-plane bending of carbon nanotube films. Int J Solids Struct. 2017;106–107:183–199.
  • Chen Y, Pan F, Guo Z, et al. Stiffness threshold of randomly distributed carbon nanotube networks. Journal of the Mechanics and Physics of Solids. 2015;84:395–423.
  • Zhang M, Chen Y, Chiang FP, et al. Modeling the Large Deformation and Microstructure Evolution of Non-woven Polymer Fiber Networks. J Appl Mech Trans ASME. 2018;86:e45.
  • Theodosiou TC, Saravanos DA. Numerical investigation of mechanisms affecting the piezoresistive properties of CNT-doped polymers using multi-scale models. Compos Sci Technol. 2010;70(9):1312–1320.
  • Berhan L, Yi YB, Sastry AM, et al. Mechanical properties of nanotube sheets: alterations in joint morphology and achievable moduli in manufacturable materials. J Appl Phys. 2004;95(8):4335–4345.
  • Lu P, Lee HP, Lu C, et al. Application of nonlocal beam models for carbon nanotubes. Int J Solids Struct. 2007;44(16):5289–5300.
  • Wang X, Wang XY, Xiao J. A non-linear analysis of the bending modulus of carbon nanotubes with rippling deformations. Compos Struct. 2005;69(3):315–321.
  • Ostanin I, Dumitrică T, Eibl S, et al. Size-Independent Mechanical Response of Ultrathin Carbon Nanotube Films in Mesoscopic Distinct Element Method Simulations. J Appl Mech Trans ASME. 2019;86(12). DOI: 10.1115/1.4044413
  • Chen YL, Liu B, Hwang KC, et al. A theoretical evaluation of load transfer in multi-walled carbon nanotubes. Carbon. 2011;49(1):193–197.
  • Piper NM, Fu Y, Tao J, et al. Vibration promotes heat welding of single-walled carbon nanotubes. Chem Phys Lett. 2011;502(4–6):231–234.
  • Stormer BA, Piper NM, Yang XM, et al. Mechanical properties of SWNT X-Junctions through molecular dynamics simulation. Int J Smart Nano Mater. 2012;3(1):33–46.
  • Kirca M, Yang X, To AC. Engineering, “A stochastic algorithm for modeling heat welded random carbon nanotube network. Comput Meth Appl Mech Engrg. 2013;259:1–9.
  • Zhang J, Jiang D, Peng HX, et al. Enhanced mechanical and electrical properties of carbon nanotube buckypaper by in situ cross-linking. Carbon. 2013;63(63):125–132.
  • Dai Z, Liu L, Qi X, et al. Three-dimensional Sponges with Super Mechanical Stability: harnessing True Elasticity of Individual Carbon Nanotubes in Macroscopic Architectures. Sci Rep. 2016;6(1):18930.
  • Chen Y, Ma Y, Yin Q, et al. Advances in mechanics of hierarchical composite materials. Compos Sci Technol. 2021;214(1):108970.
  • Fischer JE, Zhou W, Vavro J, et al. Magnetically aligned single wall carbon nanotube films: preferred orientation and anisotropic transport properties. J. Appl. Phys. 2003;93(4):2157–2163.
  • Yang C, Li Q, Nie M, et al. Preferential alignment of two-dimensional montmorillonite in polyolefin elastomer tube via rotation extrusion featuring biaxial stress field. Compos Sci Technol. 2021;215:109034.
  • Li Y, Stier B, Bednarcyk B, et al. The effect of fiber misalignment on the homogenized properties of unidirectional fiber reinforced composites. Mech Mater. 2016;92:261–274.
  • Balberg I, Binenbaum N. Computer Study of the Percolation Thresold in a Two-Dimensional Anisotropic System of Conducting Sticks. Phys Rev B. 1983;28(7):3799–3812.
  • Min KS, Sun IK, Kim SJ, et al. Size-dependent elastic modulus of single electroactive polymer nanofibers. Appl Phys Lett. 2006;89(23):231929–231929–3.
  • McDowell MT, Leach AM, Gall K. On The Elastic Modulus of Metallic Nanowires. Nano Lett. 2008;8(11):3613–3618.
  • Zhao J, Jiang JW, Wang L, et al. Coarse-grained potentials of single-walled carbon nanotubes. J Mech Phys Solids. 2014;71:197–218.
  • Cox HL. The elasticity and strength of paper and other fibrous materials. British J of Applied Physics. 1951;3(3):72.
  • Li C, Zhang Z, Zhan H, et al. Mechanical Properties of Single‐Layer Diamond Reinforced Poly (vinyl alcohol) Nanocomposites through Atomistic Simulation. Macromol Mater Eng. 2021;306(10):2100292.
  • Balberg I, Anderson C, Alexander S, et al. Excluded volume and its relation to the onset of percolation. Phys Rev B. 1984;30(7):3933.
  • Tarasevich YY, Eserkepov AV. Percolation of sticks: effect of stick alignment and length dispersity. Phys Rev E. 2018;98(6):062142.
  • Mensah B, Kim HG, Lee J-H, et al. Carbon nanotube-reinforced elastomeric nanocomposites: a review. Int J Smart Nano Mater. 2015;6(4):211–238.
  • Cui B, Pan F, Ding B, et al. Fiber Aggregation in Nanocomposites: aggregation Degree and Its Linear Relation with the Percolation Threshold. Materials. 2023;16(1):15.
  • Ellenbroek WG, Mao X. Rigidity percolation on the square lattice. Europhys Lett. 2011;96(5):54002–54007.
  • Jacobs DJ, Thorpe MF. Generic rigidity percolation in two dimensions. Phys Rev E. 1996;53(4):3682.
  • Timoshenko SP, Young DH. Theory of structures. 2nd ed. New York: McGraw-Hill; 1965.
  • Chang E. Percolation mechanism and effective conductivity of mechanically deformed 3-dimensional composite networks: computational modeling and experimental verification. Compos B Eng. 2021;207:108552.
  • Chen Y, Wang S, Pan F, et al. A Numerical Study on Electrical Percolation of Polymer-Matrix Composites with Hybrid Fillers of Carbon Nanotubes and Carbon Black. J Nanomater. 2014;15:1–9.
  • Latva-Kokko M, Timonen J. Rigidity of random networks of stiff fibers in the low-density limit. Phys Rev E. 2001;64:066117.
  • Papanikos P, Nikolopoulos DD, Tserpes KI. Equivalent beams for carbon nanotubes. Comput Mater Sci. 2008;43(2):345–352.
  • Wang XY, Wang X. Numerical simulation for bending modulus of carbon nanotubes and some explanations for experiment. Compos Part B Eng. 2004;35(2):79–86.