1,906
Views
1
CrossRef citations to date
0
Altmetric
Article

Integrating reduced graphene oxides and PPy nanoparticles for enhanced electricity from water evaporation

, , , , & ORCID Icon
Pages 230-242 | Received 28 Feb 2023, Accepted 17 Apr 2023, Published online: 24 Apr 2023

References

  • Xue G, Xu Y, Ding T, et al. Water-evaporation-induced electricity with nanostructured carbon materials. Nature Nanotechnol. 2017;12(4):317–321.
  • Zhang Z, Li X, Yin J, et al. Emerging hydrovoltaic technology. Nature Nanotechnol. 2018;13(12):1109–1119.
  • Wang X, Lin F, Wang X, et al. Hydrovoltaic technology: from mechanism to applications. Chem Soc Rev. 2022;51(12):4902–4927.
  • Yin J, Zhang Z, Li X, et al. Waving potential in graphene. Nat Commun. 2014;5(1):3582.
  • Xu W, Zheng H, Liu Y, et al. A droplet-based electricity generator with high instantaneous power density. Nature. 2020;578(7795):392–396.
  • Xu T, Ding X, Huang Y, et al. An efficient polymer moist-electric generator. Energy & Environmental Science. 2019;12(3):972–978.
  • Wang H, Sun Y, He T, et al. Bilayer of polyelectrolyte films for spontaneous power generation in air up to an integrated 1,000 V output. Nature Nanotechnol. 2021;16(7):811–819.
  • Liu X, Gao H, Ward JE, et al. Power generation from ambient humidity using protein nanowires. Nature. 2020;578(7796):550–554.
  • Guan P, Zhu R, Hu G, et al. Recent Development of Moisture-Enabled-Electric Nanogenerators, Small. 2022;18(46):2204603. DOI:10.1002/smll.202204603
  • Ding T, Liu K, Li J, et al. All-printed porous carbon film for electricity generation from evaporation-driven water flow. Adv Funct Mater. 2017;27(22):1700551.
  • Qin Y, Wang Y, Sun X, et al. Constant electricity generation in nanostructured silicon by evaporation-driven water flow. Angewandte Chemie. 2020;59(26):10619–10625.
  • Zhao X, Xiong Z, Qiao Z, et al. Robust and flexible wearable generator driven by water evaporation for sustainable and portable self-power supply. Chem Eng J. 2022;434:134671.
  • Yang S, Tao X, Chen W, et al. Ionic hydrogel for efficient and scalable moisture-electric generation. Adv Mater. 2022;34(21):2200693.
  • Zhang Y, Guo S, Yu ZG, et al. An asymmetric hygroscopic structure for moisture-driven hygro-ionic electricity generation and storage. Adv Mater. 2022;34(21):2201228.
  • Liu C, Wang S, Wang X, et al. Hydrovoltaic energy harvesting from moisture flow using an ionic polymer–hydrogel–carbon composite. Energy & Environmental Science. 2022;15(6):2489–2498.
  • Guan H, Mao G, Zhong T, et al. A self-powered UV photodetector based on the hydrovoltaic and photoelectric coupling properties of ZnO nanowire arrays. J Alloys Compd. 2021;867:159073.
  • Guan H, Zhong T, He H, et al. A self-powered wearable sweat-evaporation-biosensing analyzer for building sports big data. Nano Energy. 2019;59:754–761.
  • Fang S, Chu W, Tan J, et al. The mechanism for solar irradiation enhanced evaporation and electricity generation. Nano Energy. 2022;101:107605.
  • Yun TG, Bae J, Rothschild A, et al. Transpiration driven electrokinetic power generator. ACS Nano. 2019;13(11):12703–12709.
  • Fang S, Li J, Xu Y, et al. Evaporating potential. Joule. 2022;6(3):690–701.
  • Zheng C, Chu W, Fang S, et al. Materials for evaporation-driven hydrovoltaic technology. Interdisciplinary Materials. 2022;1(4):449–470.
  • Lao J, Wu S, Gao J, et al. Electricity generation based on a photothermally driven Ti3C2Tx MXene nanofluidic water pump. Nano Energy. 2020;70:104481.
  • Ma Q, He Q, Yin P, et al. Rational design of MOF-Based hybrid nanomaterials for directly harvesting electric energy from water evaporation. Adv Mater. 2020;32(37):2003720.
  • Shao C, Ji B, Xu T, et al. Large-scale production of flexible, high-voltage hydroelectric films based on solid oxides. ACS Applied Materials & Interfaces. 2019;11(34):30927–30935.
  • Li L, Feng S, Bai Y, et al. Enhancing hydrovoltaic power generation through heat conduction effects. Nat Commun. 2022;13(1):1043.
  • Huang Y, Cheng H, Yang C, et al. Interface-mediated hygroelectric generator with an output voltage approaching 1.5 volts. Nat Commun. 2018;9(1):4166.
  • Liang Y, Zhao F, Cheng Z, et al. Electric power generation via asymmetric moisturizing of graphene oxide for flexible, printable and portable electronics. Energy & Environmental Science. 2018;11(7):1730–1735.
  • Shao B, Wu Y, Chen X, et al. Electron-selective passivation contacts for high-efficiency nanostructured silicon hydrovoltaic devices. Adv Mater Interfaces. 2021;8(18):2101213.
  • Tan J, Fang S, Zhang Z, et al. Self-sustained electricity generator driven by the compatible integration of ambient moisture adsorption and evaporation. Nat Commun. 2022;13(1):3643.
  • Zhao F, Zhou X, Shi Y, et al. Highly efficient solar vapour generation via hierarchically nanostructured gels. Nature Nanotechnol. 2018;13(6):489–495.
  • Qi D, Liu Y, Liu Y, et al. Polymeric membranes with selective solution-diffusion for intercepting volatile organic compounds during solar-driven water remediation. Adv Mater. 2020;32(50):2004401.
  • Nie X, Ji B, Chen N, et al. Gradient doped polymer nanowire for moistelectric nanogenerator. Nano Energy. 2018;46:297–304.
  • Pang K, Song X, Xu Z, et al. Hydroplastic foaming of graphene aerogels and artificially intelligent tactile sensors. Sci Adv. 2020;6(46) eabd4045. DOI:10.1126/sciadv.abd4045
  • Liu J, Gui J, Zhou W, et al. Self-regulating and asymmetric evaporator for efficient solar water-electricity generation. Nano Energy. 2021;86:106112.
  • Xue J, Hu C, Lv L, et al. Re-shaping graphene hydrogels for effectively enhancing actuation responses. Nanoscale. 2015;7(29):12372–12378.
  • Jiang Y, Hu C, Cheng H, et al. Spontaneous, straightforward fabrication of partially reduced graphene oxide–polypyrrole composite films for versatile actuators. ACS Nano. 2016;10(4):4735–4741.
  • Torrisi F, Popa D, Milana S, et al. Stable, surfactant-free graphene–styrene methylmethacrylate composite for ultrafast lasers. Adv Opt Mater. 2016;4(7):1088–1097.
  • Zhao F, Cheng H, Zhang Z, et al. Direct power generation from a graphene oxide film under moisture. Adv Mater. 2015;27(29):4351–4357.
  • Xie J, Wang Y, Chen S. Textile-based asymmetric hierarchical systems for constant hydrovoltaic electricity generation. Chem Eng J. 2022;431:133236.
  • Zhang G, Duan Z, Qi X, et al. Harvesting environment energy from water-evaporation over free-standing graphene oxide sponges. Carbon. 2019;148:1–8.
  • Sun J, Li P, Qu J, et al. Electricity generation from a Ni-Al layered double hydroxide-based flexible generator driven by natural water evaporation. Nano Energy. 2019;57:269–278.
  • Das SS, Pedireddi VM, Bandopadhyay A, et al. Electrical power generation from wet textile mediated by spontaneous nanoscale evaporation. Nano Lett. 2019;19(10):7191–7200.
  • Tian J, Zang Y, Sun J, et al. Surface charge density-dependent performance of Ni–Al layered double hydroxide-based flexible self-powered generators driven by natural water evaporation. Nano Energy. 2020;70:104502.
  • Lee KH, Kang DJ, Eom W, et al. Holey graphene oxide membranes containing both nanopores and nanochannels for highly efficient harvesting of water evaporation energy. Chem Eng J. 2022;430:132759.
  • Zhou X, Zhang W, Zhang C, et al. Harvesting electricity from water evaporation through microchannels of natural wood. ACS Applied Materials & Interfaces. 2020;12(9):11232–11239.
  • Chi J, Liu C, Che L, et al. Harvesting water-evaporation-induced electricity based on liquid–solid triboelectric nanogenerator. Adv Sci. 2022;9(17):2201586.
  • Li L, Hao M, Yang X, et al. Sustainable and flexible hydrovoltaic power generator for wearable sensing electronics. Nano Energy. 2020;72:104663.
  • Ma X, Li Z, Deng Z, et al. Efficiently cogenerating drinkable water and electricity from seawater via flexible MOF nanorod arrays. ?J Mater Chem A. 2021;9(14):9048–9055.
  • Zhao J, Wu X, Yu H, et al. Regenerable aerogel-based thermogalvanic cells for efficient low-grade heat harvesting from solar radiation and interfacial solar evaporation systems. EcoMat. 2023;5(3):e12302.
  • Hou B, Kong D, Qian J, et al. Flexible and portable graphene on carbon cloth as a power generator for electricity generation. Carbon. 2018;140:488–493.
  • Jin H, Yoon SG, Lee WH, et al. Identification of water-infiltration-induced electrical energy generation by ionovoltaic effect in porous CuO nanowire films. Energy & Environmental Science. 2020;13(10):3432–3438.
  • He S, Chen C, Kuang Y, et al. Nature-inspired salt resistant bimodal porous solar evaporator for efficient and stable water desalination. Energy & Environmental Science. 2019;12(5):1558–1567.
  • Wu M, Peng M, Liang Z, et al. Printed honeycomb-structured reduced graphene oxide film for efficient and continuous evaporation-driven electricity generation from salt solution. ACS Applied Materials & Interfaces. 2021;13(23):26989–26997.
  • Sun Z, Han C, Gao S, et al. Achieving efficient power generation by designing bioinspired and multi-layered interfacial evaporator. Nat Commun. 2022;13(1):5077.
  • Gui J, Li C, Cao Y, et al. Hybrid solar evaporation system for water and electricity co-generation: comprehensive utilization of solar and water energy. Nano Energy. 2023;107:108155.