936
Views
0
CrossRef citations to date
0
Altmetric
Article

Sinusoidally architected helicoidal composites inspired by the dactyl club of mantis shrimp

, , , , &
Pages 321-336 | Received 07 Apr 2023, Accepted 11 Jul 2023, Published online: 20 Jul 2023

References

  • Ashby MF, Gibson L, Wegst U, et al. The mechanical properties of natural materials. I. Material property charts. Proc R Soc Lond A. 1995;450(1938):123–140. doi:10.1098/rspa.1995.0075.
  • Espinosa HD, Rim JE, Barthelat F, et al. Merger of structure and material in nacre and bone–perspectives on de novo biomimetic materials. Prog Mater Sci. 2009;54(8):1059–1100. doi:10.1016/j.pmatsci.2009.05.001
  • Gao W, Zhang Y, Ramanujan D, et al. The status, challenges, and future of additive manufacturing in engineering. Comput Aided Des. 2015;69:65–89. doi:10.1016/j.cad.2015.04.001
  • Fratzl P, Gupta H, Paschalis E, et al. Structure and mechanical quality of the collagen–mineral nano-composite in bone. J Mater Chem. 2004;14(14):2115–2123. doi:10.1039/B402005G
  • Rühle M, Evans AG. High toughness ceramics and ceramic composites. Prog Mater Sci. 1989;33(2):85–167. doi:10.1016/0079-6425(89)90005-4
  • Ritchie RO. The conflicts between strength and toughness. Nat Mater. 2011;10(11):817–822. doi:10.1038/nmat3115
  • Dunlop JW, Fratzl P. Biological composites. Ann Rev Mater Res. 2010;40(1):1–24. doi:10.1146/annurev-matsci-070909-104421
  • Meyers MA, Chen P-Y, Lin A-M, et al. Biological materials: Structure and mechanical properties. Prog Mater Sci. 2008;53(1):1–206. doi:10.1016/j.pmatsci.2007.05.002
  • Huang W, Restrepo D, Jung JY, et al. Multiscale toughening mechanisms in biological materials and bioinspired designs. Adv Mater. 2019;31(43):e1901561. doi:10.1002/adma.201901561
  • Chen Q, Pugno NM. Bio-mimetic mechanisms of natural hierarchical materials: A review. J Mech Behav Biomed Mater. 2013;19:3–33. doi:10.1016/j.jmbbm.2012.10.012
  • Zhang C, Mcadams DA, Grunlan JC. Nano/micro-manufacturing of bioinspired materials: A review of methods to mimic natural structures. Adv Mater. 2016;28(30):6292–6321. doi:10.1002/adma.201505555
  • Ha NS, Lu G. A review of recent research on bio-inspired structures and materials for energy absorption applications. Compos B Eng. 2019;181:107496. doi:10.1016/j.compositesb.2019.107496
  • Maghsoudi-Ganjeh M, Lin L, Wang X, et al. Bioinspired design of hybrid composite materials. Int J Smart Nano Mat. 2018;10(1):90–105. doi:10.1080/19475411.2018.1541145
  • Quan H, Yang W, Schaible E, et al. Novel defense mechanisms in the armor of the scales of the “living fossil” coelacanth fish. Adv Funct Mater. 2018;28(46):1804237. doi:10.1002/adfm.201804237
  • Yin S, Yang R, Huang Y, et al. Toughening mechanism of coelacanth-fish-inspired double-helicoidal composites. Compos Sci Tech. 2021;205:108650. doi:10.1016/j.compscitech.2021.108650
  • Yang W, Quan H, Meyers MA, et al. Arapaima fish scale: One of the toughest flexible biological materials. Matter. 2019;1(6):1557–1566. doi:10.1016/j.matt.2019.09.014
  • Oaki Y, Imai H. The hierarchical architecture of nacre and its mimetic material. Angew Chem Int Ed Engl. 2005;44(40):6571–6575. doi:10.1002/anie.200500338
  • Barthelat F, Espinosa HD. An experimental investigation of deformation and fracture of nacre–mother of pearl. Exp Mech. 2007;47(3):311–324. doi:10.1007/s11340-007-9040-1
  • Rivera J, Hosseini MS, Restrepo D, et al. Toughening mechanisms of the elytra of the diabolical ironclad beetle. Nature. 2020;586(7830):543–548. doi:10.1038/s41586-020-2813-8
  • Zaheri A, Fenner JS, Russell BP, et al. Revealing the mechanics of helicoidal composites through additive manufacturing and beetle developmental stage analysis. Adv Funct Mater. 2018;28(33):1803073. doi:10.1002/adfm.201803073
  • Li L, Ortiz C. Pervasive nanoscale deformation twinning as a catalyst for efficient energy dissipation in a bioceramic armour. Nat Mater. 2014;13(5):501–507. doi:10.1038/nmat3920
  • Wegst UG, Bai H, Saiz E, et al. Bioinspired structural materials. Nat Mater. 2015;14(1):23–36. doi:10.1038/nmat4089
  • Yaraghi NA, Guarin-Zapata N, Grunenfelder LK, et al. A sinusoidally architected helicoidal biocomposite. Adv Mater. 2016;28(32):6835–6844. doi:10.1002/adma.201600786
  • Patek SN, Korff W, Caldwell RL. Deadly strike mechanism of a mantis shrimp. Nature. 2004;428(6985):819–820. doi:10.1038/428819a
  • Patek SN, Caldwell RL. Extreme impact and cavitation forces of a biological hammer: Strike forces of the peacock mantis shrimp odontodactylus scyllarus. J Exp Biol. 2005;208(Pt 19):3655–3664. doi:10.1242/jeb.01831
  • Weaver JC, Milliron GW, Miserez A, et al. The stomatopod dactyl club: A formidable damage-tolerant biological hammer. Science. 2012;336(6086):1275–1280. doi:10.1126/science.1218764
  • Huang W, Shishehbor M, Guarin-Zapata N, et al. A natural impact-resistant bicontinuous composite nanoparticle coating. Nat Mater. 2020;19(11):1236–1243. doi:10.1038/s41563-020-0768-7
  • Amini S, Tadayon M, Idapalapati S, et al. The role of quasi-plasticity in the extreme contact damage tolerance of the stomatopod dactyl club. Nat Mater. 2015;14(9):943–950. doi:10.1038/nmat4309
  • Wang K, Wu X, An L, et al. Crack modes and toughening mechanism of a bioinspired helicoidal recursive composite with nonlinear recursive rotation angle-based layups. J Mech Behav Biomed Mater. 2023;142:105866. doi:10.1016/j.jmbbm.2023.105866
  • Luo H, Wang H, Zhao Z, et al. Experimental and numerical investigation on the failure behavior of bouligand laminates under off-axis open-hole tensile loading. Compos Struct. 2023;313:313. doi:10.1016/j.compstruct.2023.116932
  • Yang X, Ma J, Shi Y, et al. Crashworthiness investigation of the bio-inspired bi-directionally corrugated core sandwich panel under quasi-static crushing load. Mater Des. 2017;135:275–290. doi:10.1016/j.matdes.2017.09.040
  • Yao Y, Dou H, Liu T, et al. Micro- and nano-scale mechanisms of enzymatic treatment on the interfacial behaviors of sisal fiber reinforced bio-based epoxy resin. Ind Crop Prod. 2023;194:116319. doi:10.1016/j.indcrop.2023.116319
  • Kang J, Liu T, Lu Y, et al. Polyvinylidene fluoride piezoelectric yarn for real-time damage monitoring of advanced 3d textile composites. Compos B Eng. 2022; 245:110229. doi:10.1016/j.compositesb.2022.110229
  • Li H, Chen W, Hao H. Factors influencing impact force profile and measurement accuracy in drop weight impact tests. Int J Impact Eng. 2020;145:145. doi:10.1016/j.ijimpeng.2020.103688
  • Yin S, Yang R, Huang Y, et al. Toughening mechanism of coelacanth-fish-inspired double-helicoidal composites. Compos Sci Technol. 2021;205:108650. doi:10.1016/j.compscitech.2021.108650