702
Views
0
CrossRef citations to date
0
Altmetric
Article

A novel smart steel strand based on optical-electrical co-sensing for full-process and full-scale monitoring of prestressing concrete structures

, ORCID Icon &
Pages 337-368 | Received 18 Mar 2023, Accepted 14 Jul 2023, Published online: 24 Jul 2023

References

  • Noble D, Nogal M, Pakrashi V. The effect of prestress force magnitude and eccentricity on the natural bending frequencies of uncracked prestressed concrete beams. J Sound Vibr. 2016;365:22–44. doi: 10.1016/j.jsv.2015.11.047
  • Sony S, Laventure S, Sadhu A. A literature review of next‐generation smart sensing technology in structural health monitoring. Struct Control Health Monit. 2019;26(3):e2321. doi: 10.1002/stc.2321
  • Le TC, Phan TTV, Nguyen TH, et al. A low-cost prestress monitoring method for post-tensioned RC beam using piezoelectric-based smart strand. Buildings. 2021;11(10):431. doi: 10.3390/buildings11100431
  • Voutetaki ME, Naoum MC, Papadopoulos NA, et al. Cracking diagnosis in fiber-reinforced concrete with synthetic fibers using piezoelectric transducers. Fibers. 2022;10(1):5. doi: 10.3390/fib10010005
  • Chalioris CE, Providakis CP, Favvata MJ, et al. Experimental application of a wireless earthquake damage monitoring system (WiAMS) using PZT transducers in reinforced concrete beams. WIT Trans Built Environ. 2015;152:233–243.
  • Zhang S, Zhang H, Zhou J, et al. Alternating prestress monitoring of steel strands based on the magnetoelastic inductance method. Measurement. 2022;194:111024. DOI:10.1016/j.measurement.2022.111024
  • Jiao Y, Zhang Y, Shan W, et al. Damage fracture characterization of reinforced concrete beam subjected to four-point bending with parametric analysis of static, dynamic, and acoustic properties. Struct Health Monit. 2020;19(4):1202–1218. doi: 10.1177/1475921719881756
  • Mpalaskas AC, Matikas TE, Aggelis DG, et al. Acoustic emission for evaluating the reinforcement effectiveness in steel fiber reinforced concrete. Applied Sciences. 2021;11(9):3850. doi: 10.3390/app11093850
  • Mpalaskas AC, Aggelis DG, Matikas TE. Monitoring the fracture behavior of epoxy resin repaired fiber reinforced concrete specimens by acoustic emission[C]//sensors and smart structures technologies for civil, mechanical, and aerospace systems 2021. SPIE. 2021;11591:461–474.
  • Yim J, Wang ML, Shin SW, et al. Field application of elasto-magnetic stress sensors for monitoring of cable tension force in cable-stayed bridges. Smart Struct Syst. 2013;12(3_4):465–482. doi: 10.12989/sss.2013.12.3_4.465
  • Aggelis DG, Mpalaskas AC, Matikas TE. Acoustic emission signatures of damage modes in concrete. Smart Sensor Phenomena, Technol, Networks, Syst Integ 2014. 2014;9062:208–215. SPIE.
  • Aggelis DG, Mpalaskas AC, Matikas TE. Acoustic monitoring for the evaluation of concrete structures and materials. In: Acoustic Emission and Related Non-Destructive Evaluation Techniques in the Fracture Mechanics of Concrete. Woodhead Publishing; 2015. pp. 269–286. DOI:10.1016/B978-1-78242-327-0.00013-1.
  • Tang Y, Huang Z, Chen Z, et al. Novel visual crack width measurement based on backbone double-scale features for improved detection automation. Eng Struct. 2023;274:115158. DOI:10.1016/j.engstruct.2022.115158
  • Abdel‐Jaber H, Glisic B. Monitoring of prestressing forces in prestressed concrete structures—An overview. Struct Control Health Monit. 2019;26(8):e2374. doi: 10.1002/stc.2374
  • Bonopera M, Chang KC, Lee ZK. State-of-the-art review on determining prestress losses in prestressed concrete girders. Appl Sci. 2020;10(20):7257. doi: 10.3390/app10207257
  • Dong Y. High-performance distributed Brillouin optical fiber sensing. Photonic Sens. 2021;11(1):69–90. doi: 10.1007/s13320-021-0616-7
  • Zhang H, Zhou D, Wang B, et al. Recent progress in fast distributed Brillouin optical fiber sensing. Appl Sci. 2018;8(10):1820. doi: 10.3390/app8101820
  • Yang H, Huang Y, Zhou Z, et al. Long-term performance of packaged fiber Bragg grating sensors for strain monitoring inside creep medium. Int J Smart Nano Mater. 2022;13(1):42–63. doi: 10.1080/19475411.2022.2027548
  • J. Meissner, W. Nowak, V. Slowik, and T. Klink, “Strain Monitoring at a Prestressed Concrete Bridge,” in 12th International Conference on Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optica Publishing Group, 1997), paper OThC1.
  • Maaskant R, Alavie T, Measures RM, et al. Fiber-optic Bragg grating sensors for bridge monitoring. Cement And Concrete Composites. 1997;19(1):21–33. doi: 10.1016/S0958-9465(96)00040-6
  • Gao J, Shi B, Zhang W, et al. Monitoring the stress of the post-tensioning cable using fiber optic distributed strain sensor. Measurement. 2006;39(5):420–428. doi: 10.1016/j.measurement.2005.12.002
  • Ou JP, Zhou Z, Wu ZH, et al. Intelligent monitoring technology of optical fiber grating of heilongjiang hulanhe bridge[J]. J Civil Eng. 2004;(1):45–49+64.
  • Butler LJ, Gibbons N, He P, et al. Evaluating the early-age behaviour of full-scale prestressed concrete beams using distributed and discrete fibre optic sensors. Construction And Building Materials. 2016;126:894–912. DOI:10.1016/j.conbuildmat.2016.09.086
  • Zhou Z, Ou JP, Smart FRP-OFBG bars and their application in reinforced concrete beams[C]. Proceedings of the First International Conference on Structural Health Monitoring and Intelligent Structure, 2003, pp. 861–866.
  • Zhou Z, He JP, Chen GD, et al. A smart steel strand for the evaluation of prestress loss distribution in post-tensioned concrete structures. Intell Mater Syst Struct. 2009;20(16):1901–1912. doi: 10.1177/1045389X09347021
  • Lan CG, Zhou Z, Ou JP. A novel GFRP-FBG smart steel strand and its properties research. Appl Mech Mater. 2012;105:1087–1091. doi: 10.4028/www.scientific.net/AMM.105-107.1087
  • Qin HY, Shen QX, Zhu WX, et al. Range‐expansion technology and fatigue performance study on the self‐sensing steel strand with an embedded fibre Bragg grating sensor. Strain. 2020;56(5):e12354. doi: 10.1111/str.12354
  • Qin H, Shen Q, Ou J, et al. Long-term monitoring reliability and life prediction of fiber bragg grating-based self-sensing steel strands. Adv Civil Eng. 2020;2020:1–12. DOI:10.1155/2020/7687039
  • GB/T5224-2014. Steel strand for prestressed concrete. Beijing: Standards Press of China; 2014.
  • Wei T, Wu S, Huang J, et al. Coaxial cable Bragg grating. Appl Phys Lett. 2011;99(11):113517. doi: 10.1063/1.3636406
  • Huang J, Wei T, Lan X, et al. Coaxial cable Bragg grating sensors for large strain measurement with high accuracy[C]. sensors and smart structures technologies for civil, mechanical, and aerospace systems 2012. Spie. 2012;8345:840–848.
  • Huang J, Wei T, Wu S, et al. Coaxial cable bragg grating sensors for structural health monitoring. Int J Pavement Res Technol. 2012;5(5):338.
  • Huang J, Wei T, Fan J, et al. Coaxial cable Bragg grating assisted microwave coupler. Rev Sci Instrum. 2014;85(1):014703. doi: 10.1063/1.4856695
  • Stevan SL Jr, Mendes Júnior JJA, Janzen FC, et al. Long period Bragg grating in coaxial transmission lines. J Microw Optoelectron Electromagn Appl. 2015;14(1):28–39. doi: 10.1590/2179-10742015v14i1424
  • Huang J, Wang T, Hua L, et al. A coaxial cable Fabry-Perot interferometer for sensing applications. Sensors. 2013;13(11):15252–15260. doi: 10.3390/s131115252
  • Cheng B, Zhu W, Hua L, et al. Distributed torsion sensor based on cascaded coaxial cable Fabry–Perot interferometers. Meas SciTechnol. 2016;27(7):075103. doi: 10.1088/0957-0233/27/7/075103
  • Zhu C, Gerald RE, Huang J. On the Sensitivity of Microwave Fabry–Perot Interferometers for Displacement Detection. IEEE Trans Microwave Theory Techn. 2022;70(8):3943–3953. doi: 10.1109/TMTT.2022.3183566
  • Jiao T, Zhou Z, Liu J, et al. Large strain-tolerated smart steel strand with built in coaxial cable Fabry–Perot interferometer. Measurement. 2020;151:107019. doi: 10.1016/j.measurement.2019.107019
  • Jiao T, Zhou Z. An optical-electrical co-sensing tape for cross-sectional deformation monitoring of shield tunnels. Tunn Undergr Space Technol. 2021;117:104148. doi: 10.1016/j.tust.2021.104148