1,080
Views
0
CrossRef citations to date
0
Altmetric
Article

Antimicrobial silicone skin adhesives facilitated by controlled octenidine release from glycerol compartments

, , , , &
Pages 369-389 | Received 27 Apr 2023, Accepted 20 Jul 2023, Published online: 27 Jul 2023

References

  • Han G, Ceilley R. Chronic wound healing: a review of current management and treatments. Adv Ther. 2017;34(3):599–610. doi: 10.1007/s12325-017-0478-y.
  • Cutting KF. Impact of adhesive surgical tape and wound dressings on the skin, with reference to skin stripping. J Wound Care. 2008;17(4):160–162. doi: 10.12968/jowc.2008.17.4.28836
  • Hansen D, Zajforoushan Moghaddam S, Eiler J, et al. Performance of polymeric skin adhesives during perspiration. ACS Appl Polym Mater. 2020;2(4):1535–1542. doi: 10.1021/acsapm.9b01214
  • Bjarnsholt T, Kirketerp-Møller K, Jensen PØ, et al. Why chronic wounds will not heal: a novel hypothesis wound repair and regeneration. Wound Repair Regener. 2008;16(1):2–10. doi: 10.1111/j.1524-475X.2007.00283.x
  • Serra R, Grande R, Butrico L, et al. Chronic wound infections: the role of Pseudomonas aeruginosa and staphylococcus aureus. Expert Rev Anti Infect Ther. 2015 May;13(5):605–613.
  • Ge Y, Wang Q. Current research on fungi in chronic wounds. Front Mol Biosci. 2022 Jan;9:1057766. doi: 10.3389/FMOLB.2022.1057766
  • Yazdanpanah L, Nasiri M, Adarvishi S. Literature review on the management of diabetic foot ulcer. World J Diabetes. 2015;6(1):37–53. Accessed May 25, 2023. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4317316/
  • Wang Y, Gao B, He B, et al. Toward efficient wound management: bioinspired microfluidic and microneedle patch. Small. 2023;19:2206270. doi: 10.1002/smll.202206270
  • Sivakumar S, Murali R., Arathanaikotti D., et al. Ferulic acid loaded microspheres reinforced in 3D hybrid scaffold for antimicrobial wound dressing. Int J Biol Macromol. 2021; 177:467–473. doi: 10.1016/j.ijbiomac.2021.02.124.
  • Chen H, Peng Y, Wu S, et al. Electrospun 3D fibrous scaffolds for chronic wound repair. Materials. 2016;9(4):272. doi: 10.3390/ma9040272
  • Jose J, Pai AR, Gopakumar DA, et al. Novel 3D porous aerogels engineered at nano scale from cellulose nano fibers and curcumin: an effective treatment for chronic wounds. Carbohydr Polym. 2022;287:119338. DOI:10.1016/j.carbpol.2022.119338
  • Tsegay F, Elsherif M, Butt H. Smart 3D printed hydrogel skin wound bandages: a review. Polymers. 14(5): MDPI:1012. Mar. 1, 2022. 10.3390/polym14051012
  • Mirani B, Pagan E, Currie B, et al. An advanced multifunctional hydrogel-based dressing for wound monitoring and drug delivery. Adv Healthc Mater. 2017;6(19):1700718.
  • Long J, Etxabide Etxeberria A, Nand AV, et al. A 3D printed chitosan-pectin hydrogel wound dressing for lidocaine hydrochloride delivery. Mater Sci Eng C. 2019;104:109873. doi: 10.1016/j.msec.2019.109873
  • Muwaffak Z, Goyanes A, Clark V, et al. Patient-specific 3D scanned and 3D printed antimicrobial polycaprolactone wound dressings. 2017. doi: 10.1016/j.ijpharm.2017.04.077.
  • Seol Y-J, Lee H, Copus JS, et al. 3D bioprinted biomask for facial skin reconstruction. Bioprinting. 2018;10:e00028. doi:10.1016/j.bprint.2018.e00028
  • Shi G, Wang Y, Derakhshanfar S, et al. Biomimicry of oil infused layer on 3D printed poly(dimethylsiloxane): non-fouling, antibacterial and promoting infected wound healing. Mater Sci Eng C. 2019;100:915–927. doi:10.1016/j.msec.2019.03.058
  • Chiaula V, Mazurek P, Eiler J, et al. Glycerol-silicone adhesives with excellent fluid handling and mechanical properties for advanced wound care applications. Int J Adhes Adhes. 2020;102:102667. DOI:10.1016/j.ijadhadh.2020.102667
  • Mazurek P, Brook MA, Skov AL. Glycerol-silicone elastomers as active matrices with controllable release profiles. Langmuir. 2018;34(38):11559–11566. doi: 10.1021/acs.langmuir.8b02039
  • Moon J, Huh Y, Park J, et al. Adhesion behavior of catechol-incorporated silicone elastomer on metal surface. ACS Appl Polym Mater. 2020;2(6):2444–2451. doi: 10.1021/acsapm.0c00387
  • Bejenariu AG, Yu L, Skov AL. Low moduli elastomers with low viscous dissipation. Soft Matter. 2012;8(14):3917–3923. doi: 10.1039/c2sm25134e
  • González L, Baoguang M, Li L, et al. Encapsulated PDMS microspheres with reactive handles. Macromol Mater Eng. 2014;299(6):729–738. doi: 10.1002/mame.201300319
  • Mazurek P, Vudayagiri S, Skov AL. How to tailor flexible silicone elastomers with mechanical integrity: A tutorial review. Chem Soc Rev. 2019;48(6):1448–1464. doi: 10.1039/c8cs00963e.
  • Winter HH, Chambon F. Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. J Rheol (N Y N Y). 1986;30(2):367–382. doi: 10.1122/1.549853.
  • Villar MA, Bibbó MA, Vallés EM. Influence of pendant chains on mechanical properties of model poly(dimethylsiloxane) networks. 1. analysis of the molecular structure of the network. Macromolecules. 1996;29(11):4072–4080. doi: 10.1021/ma9506593.
  • Villar MA, Vallés EM. Influence of pendant chains on mechanical properties of model poly(dimethylsiloxane) networks. 2. viscoelastic properties. Macromolecules. 1996;29(11):4081–4089. doi: 10.1021/ma9506602.
  • Chen S, Zhang J. Catalytic activity and inhibition of platinum complexes for room temperature vulcanized silicone rubber. Recent Pat Mater Sci. 2010;2(2):158–166. doi: 10.2174/1874465610902020158
  • Hallerstig LM, Granath P, Lindgren L, et al. Determination of silver in soft silicone wound dressings using dodecylbenzene sulfonic acid digestion and inductively coupled plasma optical emission spectroscopy. Anal Methods. 2017;9(1):149–153. doi: 10.1039/c6ay02230h
  • Vimbela GV, Ngo SM, Fraze C, et al. Antibacterial properties and toxicity from metallic nanomaterials. Int J Nanomedicine. 2017;12:3941–3965. doi: 10.2147/IJN.S134526
  • Nam G, Rangasamy S, Purushothaman B, et al. The application of bactericidal silver nanoparticles in wound treatment. Nanomater Nanotechnol. 2015;5(July):23. doi: 10.5772/60918.
  • Brandt O, Mildner M, Egger AE, et al. Nanoscalic silver possesses broad-spectrum antimicrobial activities and exhibits fewer toxicological side effects than silver sulfadiazine. Nanomedicine. 2012;8(4):478–488. doi: 10.1016/j.nano.2011.07.005
  • Williamson DA, Carter GP, Howden BP. Current and emerging topical antibacterials and antiseptics: agents, action, and resistance patterns. Clin Microbiol Rev. 2017;30(3):827–860. doi: 10.1128/CMR.00112-16.
  • Vigano L, Nosotti MG, Orlova N, et al. Use of chlorhexidine, side effects and antibiotic resistance. Biointerface Res Appl Chem. 2018;8(3):3265–3266.
  • Mazurek P, Frederiksen NS, Silau H, et al. Glycerol–silicone membranes for sustained and controlled topical delivery of antimicrobial and pain-relief drugs. Adv Mater Interfaces. 2021 Mar;8(5):2001873.
  • Thaha KA, Varma RL, Nair MG, et al. Interaction between octenidine-based solution and sodium hypochlorite: a mass spectroscopy, proton nuclear magnetic resonance, and scanning electron microscopy–based observational study. J Endod. 2017;43(1):135–140. doi: 10.1016/j.joen.2016.09.015
  • Eldeniz AU, Guneser MB, Akbulut MB. Comparative antifungal efficacy of light-activated disinfection and octenidine hydrochloride with contemporary endodontic irrigants. Lasers Med Sci. 2015;30(2):669–675. doi: 10.1007/s10103-013-1387-1.
  • Stewart CA, Finer Y, Hatton BD. Drug self-assembly for synthesis of highly-loaded antimicrobial drug-silica particles. Sci Rep. 2018;8(1):1–12. doi: 10.1038/s41598-018-19166-8.
  • Alkhatib Y, Dewaldt M, Moritz S, et al. Controlled extended octenidine release from a bacterial nanocellulose/Poloxamer hybrid system. Eur J Pharm Biopharm. 2017;112:164–176. doi: 10.1016/j.ejpb.2016.11.025
  • Promzeleva M, Volkova T, Proshin A, et al. Improved biopharmaceutical properties of oral formulations of 1,2,4-thiadiazole derivative with cyclodextrins: In Vitro and in vivo evaluation. ACS Biomater Sci Eng. 2018;4(2):491–501. doi: 10.1021/acsbiomaterials.7b00887
  • Loftsson T, Másson M, Brewster ME. Self-association of cyclodextrins and cyclodextrin complexes. J Pharm Sci. 2004;93(5):1091–1099. doi: 10.1002/jps.20047.
  • Popielec A, Loftsson T. Effects of cyclodextrins on the chemical stability of drugs. Int J Pharm. 2017;531(2):532–542. doi: 10.1016/j.ijpharm.2017.06.009.
  • Marques J, Braga TM, Almeida Paz FA, et al. Cyclodextrins improve the antimicrobial activity of the chloride salt of ruthenium(II) chloro-phenanthroline-trithiacyclononane. Biometals. 2009;22(3):541–556. doi: 10.1007/s10534-009-9211-x
  • Valente AJM, Carvalho RA, Söderman O. Do cyclodextrins aggregate in water? insights from NMR experiments. Langmuir. 2015;31(23):6314–6320. doi: 10.1021/acs.langmuir.5b01493
  • Chougule V, Rajmane M, Chougule N, et al. Development of reverse-phase high-performance liquid chromatographic and UV-Spectrophotometric method with validation for octenidine dihydrochloride. Am J PharmTech Res. 2022;12(3): [Online]. Available. http://www.ajptr.com/www.ajptr.com
  • Style RW, Boltyanskiy R, Allen B, et al. Stiffening solids with liquid inclusions. Nat Phys. 2015;11(1):82–87. doi: 10.1038/nphys3181
  • Frankaer SMG, Jensen MK, Bejenariu AG, et al. Investigation of the properties of fully reacted unstoichiometric polydimethylsiloxane networks and their extracted network fractions. Rheol Acta. 2012;51(6):559–567. doi: 10.1007/s00397-012-0624-z
  • Schneider HJ, Hacket F, Rüdiger V, et al. NMR studies of cyclodextrins and cyclodextrin complexes. Chem Rev. 1998;98(5):1755–1785. doi: 10.1021/cr970019t
  • Kamal MS. A review of gemini surfactants: potential application in enhanced oil recovery. J Surfactants Deterg. 2016;19(2):223–236. doi: 10.1007/s11743-015-1776-5.
  • Guerrero-Martínez A, González-Gaitano G, Viñas MH, et al. Inclusion complexes between β-cyclodextrin and a gemini surfactant in aqueous solution: an NMR study. J Phys Chem B. 2006;110(28):13819–13828. doi: 10.1021/jp0615813
  • Hill ZD, MacCarthy P. Novel approach to job’s method: an undergraduate experiment. J Chem Educ. 1986;63(2):162–167. doi: 10.1021/ed063p162.
  • Fernandes CM, Carvalho RA, Pereira da Costa S, et al. Multimodal molecular encapsulation of nicardipine hydrochloride by β-cyclodextrin, hydroxypropyl-β-cyclodextrin and triacetyl-β-cyclodextrin in solution. structural studies by 1H NMR and ROESY experiments. Eur J Pharmaceut Sci. 2003;18(5):285–296. doi: 10.1016/S0928-0987(03)00025-3.
  • Upadhyay SK, Kumar G. NMR and molecular modelling studies on the interaction of fluconazole with β-cyclodextrin. Chem Cent J. 2009;3(1):1–9. doi: 10.1186/1752-153X-3-9.
  • Zhu B, Jia L, Guo X, et al. Controllable assembly of a novel cationic gemini surfactant containing a naphthalene and amide spacer with β-cyclodextrin. Soft Matter. 2019;15(15):3198–3207. doi: 10.1039/c9sm00172g
  • Eshelby JD. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc Lond A Math Phys Sci. 1957;241(1226):376–396. doi: 10.1007/1-4020-4499-2_18.
  • Style RW, Wettlaufer JS, Dufresne ER. Surface tension and the mechanics of liquid inclusions in compliant solids. Soft Matter. 2015;11(4):672–679. doi: 10.1039/c4sm02413c.
  • Duan HL, Wang J, Huang ZP, et al. Eshelby formalism for nano-inhomogeneities. Proc R Soc A. 2005;461(2062):3335–3353. doi: 10.1098/rspa.2005.1520
  • Wang J, Duan HL, Huang ZP, et al. A scaling law for properties of nano-structured materials. Proc R Soc A. 2006;462(2069):1355–1363. doi: 10.1098/rspa.2005.1637
  • Cheng J, Hu Y, Luo Z, et al. Preparation and properties of octenyl succinate β-cyclodextrin and its application as an emulsion stabilizer. Food Chem. 2017;218:116–121. doi: 10.1016/j.foodchem.2016.09.019
  • Makhlof A, Miyazaki Y, Tozuka Y, et al. Cyclodextrins as stabilizers for the preparation of drug nanocrystals by the emulsion solvent diffusion method. Int J Pharm. 2008;357(1–2):280–285. doi: 10.1016/j.ijpharm.2008.01.025.
  • Fried JR. Polymer science and technology. Third edit ed. Westford (MA): Prentice Hall; 2014.
  • Mazurek P, Hvilsted S, Skov AL. Green silicone elastomer obtained from a counterintuitively stable mixture of glycerol and PDMS. Polymer (Guildf). 2016;87:1–7. doi: 10.1016/j.polymer.2016.01.070
  • Kirketerp-Møller K, Jensen PØ, Fazli M, et al. Distribution, organization, and ecology of bacteria in chronic wounds. J Clin Microbiol. 2008;46(8):2717–2722. doi: 10.1128/JCM.00501-08
  • Rhoads DD, Wolcott RD, Sun Y, et al. Comparison of culture and molecular identification of bacteria in chronic wounds. Int J Mol Sci. 2012;13(3):2535–2550. doi: 10.3390/ijms13032535
  • Omar A, Wright J, Schultz G, et al. Microbial biofilms and chronic wounds. Microorganisms. 2017;5(1):9. doi: 10.3390/microorganisms5010009.
  • Song F, Brasch ME, Wang H, et al. How bacteria respond to material stiffness during attachment: a role of Escherichia coli flagellar motility. ACS Appl Mater Interfaces. 2017;9(27):22176–22184. doi: 10.1021/acsami.7b04757