1,365
Views
4
CrossRef citations to date
0
Altmetric
Articles

Mechanical behavior of advanced nano-laminates embedded with carbon nanotubes – a review

, &
Pages 136-171 | Received 14 Dec 2009, Accepted 22 Feb 2010, Published online: 13 May 2010

References

  • Garcia , E.J. , Wardle , B.L. and Hart , A.J. 2008 . Joining prepreg composite interfaces with aligned carbon nanotubes . Compos. Appl. Sci. Manuf. , 39 : 1065 – 1070 .
  • Abot , J.L. , Song , Y. , Schulz , M.J. and Shanov , V.N. 2008 . Novel carbon nanotube array-reinforced laminated composite materials with higher interlaminar elastic properties . Compos. Sci. Tech. , 68 : 2755 – 2760 .
  • Fan , Z.H. , Santare , M.H. and Advani , S.G. 2008 . Interlaminar shear strength of glass fiber reinforced epoxy composites enhanced with multi-walled carbon nanotubes . Compos. Appl. Sci. Manuf. , 39 : 540 – 554 .
  • Zhou , Y.X. , Pervin , F. , Lewis , L. and Jeelani , S. 2008 . Fabrication and characterization of carbon/epoxy composites mixed with multi-walled carbon nanotubes . Mater. Sci. Eng. A , 475 : 157 – 165 .
  • Garcia , E.J. , Wardle , B.L. , Hart , A.J. and Yamamoto , N. 2008 . Fabrication and multifunctional properties of a hybrid laminate with aligned carbon nanotubes grown in-situ . Compos. Sci. Tech. , 68 : 2034 – 2041 .
  • Bekyarova , E. , Thostenson , E.T. , Yu , A. , Itkis , M.E. , Fakhrutdinov , D. , Chou , T.W. and Haddon , R.C. 2007 . Functionalized single-walled carbon nanotubes for carbon fiber-epoxy composites . J. Phys. Chem. C , 111 : 17865 – 17871 .
  • Kepple , K.L. , Sanborn , G.P. , Lacasse , P.A. , Gruenberg , K.M. and Ready , W.J. 2008 . Improved fracture toughness of carbon fiber composite functionalized with multi walled carbon nanotubes . Carbon , 46 : 2026 – 2033 .
  • Bekyarova , E. , Thostenson , E.T. , Yu , A. , Kim , H. , Gao , J. , Tang , J. , Hahn , H.T. , Chou , T.W. , Itkis , M.E. and Haddon , R.C. 2007 . Multiscale carbon nanotube-carbon fiber reinforcement for advanced epoxy composites . Langmuir , 23 : 3970 – 3974 .
  • Zhu , J. , Imam , A. , Crane , R. , Lozao , K. , Khabashesku , V.N. and Barrera , E.V. 2006 . Processing a glass fiber reinforced vinyl ester composite with nanotube enhancement of interlaminar shear strength . Compos. Sci. Tech. , 67 : 1509 – 1517 .
  • Yokozeki , T. , Iwahori , Y. and Ishiwata , S. 2007 . Matrix cracking behaviors in carbon fiber/epoxy laminates filled with cup-stacked carbon nanotubes (CSCNTs) . Compos. Appl. Sci. Manuf. , 38 : 917 – 924 .
  • Yokozeki , T. , Iwahori , Y. , Ishibashi , M. , Yanagisawa , T. , Imai , K. , Arai , M. , Takahashi , T. and Enomoto , K. 2009 . Fracture toughness improvement of CFRP laminates by dispersion of cup-stacked carbon nanotubes . Compos. Sci. Tech. , 69 : 2268 – 2273 .
  • Cho , J. , Daniel , I.M. and Dikin , D.A. 2008 . Effects of block copolymer dispersant and nanotube length on reinforcement of carbon/epoxy composites . Compos. Appl. Sci. Manuf. , 39 : 1844 – 1850 .
  • Seyhan , A.T. , Tanoglu , M. and Schulte , K. 2008 . Mode I and Mode II fracture toughness of E-glass non-crimp fabric/carbon nanotube (CNT) modified polymer based composites . Eng. Fract. Mech. , 75 : 5151 – 5162 .
  • Sun , L.L. , Zhao , Y. , Duan , Y.X. and Zhang , Z.G. 2008 . Interlaminar shear property of modified glass fiber-reinforced polymer with different MWCNTs . Chin. J. Aeronaut. , 21 : 361 – 369 .
  • Yokozeki , T. , Iwahori , Y. , Ishiwata , S. and Eomoto , K. 2007 . Mechanical properties of CFRP laminates manufactured from unidirectional prepregs using CSCNT-dispersed epoxy . Compos. Appl. Sci. Manuf. , 38 : 2121 – 2130 .
  • Gojny , F.H. , Malte , H.G. , Wichmann , M.H.G. , Fiedler , B. , Bauhofer , W. and Schulte , K. 2005 . Influence of nano-modification on the mechanical and electrical properties of conventional fibre-reinforced composites . Compos. Appl. Sci. Manuf. , 36 : 1525 – 1535 .
  • Kim , M. , Park , Y.B. , Okoli , O.I. and Zhang , C. 2009 . Processing, characterization, and modelling of carbon nanotube-reinforced multiscale composites . Compos. Sci. Tech. , 69 : 335 – 342 .
  • Chen , W. , Shen , H. , Auad , M.L. , Huang , C.Z. and Nutt , S. 2009 . Basalt fibre-epoxy laminates with functionalized multi-walled carbon nanotubes . Compos. Appl. Sci. Manuf. , 40 : 1082 – 1089 .
  • Godara , A. , Mezzo , L. , Luizi , F. , Warrier , A. , Lomov , S.V. , Vuure , A.W.V , Gorbatikh , L. , Moldenaers , P. and Verpoest , I. 2009 . Influence of carbon nanotube reinforcement on the processing and the mechanical behaviour of carbon fiber/epoxy composites . Carbon , 47 : 2914 – 2923 .
  • Siddiqui , N.A. , Sham , M.L. , Tang , B.Z. , Munir , A. and Kim , J.K. 2009 . Tensile strength of glass fires with carbon nanotube-epoxy nanocomposite coating . Compos. Appl. Sci. Manuf. , 40 : 1606 – 1614 .
  • Arai , M. , Noro , Y. , Sugimoto , K.I. and Endo , M. 2008 . Mode I and mode II interlaminar fracture toughness of CFRP laminates toughened by carbon nanofiber interlayer . Compos. Sci. Tech. , 68 : 516 – 525 .
  • Shen , Z.Q. , Bateman , S. , Wu , D.Y. , McMahon , P. , Olio , M.D. and Gotama , J. 2009 . The effects of carbon nanotubes on mechanical and thermal properties of woven glass fibre reinforced polyamide-6 nanocomposites . Compos. Sci. Tech. , 69 : 239 – 244 .
  • Karapappas , P. , Vavouliotis , A. , Tsotra , P. , Kostopoulos , W. and Paipetis , A. 2009 . Enhanced fracture properties of carbon reinforced composites by the addition of multi-wall carbon nanotubes . J. Compos. Mater. , 43 : 977 – 985 .
  • Grujicic , M. , Bell , W.C. , Thompson , L.L. , Koudela , K.L. and Cheeseman , B.A. 2008 . Ballistic-protection performance of carbon-nanotube-doped poly-vinyl-ester-epoxy matrix composite armor reinforced with E-glass fiber mats . Mater. Sci. Eng. A , 479 : 10 – 22 .
  • Grimmer , C.S. and Dharan , C.K.H. 2008 . High-cycle fatigue of hybrid carbon nanotube/glass fiber/polymer composites . J. Mater. Sci. , 43 : 4487 – 4492 .
  • Thostenson , E.T. , Ren , Z.F. and Chou , T.W. 2001 . Advances in the science and technology of carbon nanotubes and their composites: a review . Compos. Sci. Tech. , 61 : 1899 – 1912 .
  • Qian , D. , Wagner , G.J. and Liu , W.K. 2002 . Mechanics of carbon nanotubes . Appl. Mech. Rev. , 55 : 495 – 531 .
  • Lau , K.T. and Hui , D. 2002 . The revolutionary creation of new advanced materials-carbon nanotube composites . Compos. B Eng. , 33 : 263 – 271 .
  • Srivastava , D. and Wei , C.Y. 2003 . Nanomechanics of carbon nanotubes and composites . Appl. Mech. Rev. , 56 : 215 – 229 .
  • Lau , K.T. , Gu , C. and Hui , D. 2006 . A critical review on nanotube and nanotube/nanoclay related polymer composite materials . Compos. B Eng. , 37 : 425 – 436 .
  • Eftekhari , A. , Jafarkhani , P. and Moztarzadeh , F. 2006 . High-yield synthesis of carbon nanotubes using a water-soluble catalyst support in catalytic chemical vapor deposition . Carbon , 44 : 1298 – 1352 .
  • Zhu , J. , Kim , J.D. , Peng , H.Q. , Margrave , J.L. , Khabashesku , V.N. and Barrera , E.V. 2003 . Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization . Nano Lett. , 3 : 1107 – 1113 .
  • Wang , J.G. , Fang , Z.P. , Gu , A.J. , Xu , L.H. and Liu , F. 2005 . Effect of amino-functionalization of multi-walled carbon nanotubes on the dispersion with epoxy resin matrix . J. Appl. Polymer Sci. , 100 : 97 – 104 .
  • Che , J.F. , Yuan , W. , Jiang , G.H. , Dai , J. , Lim , S.Y. and Park , M.B.C. 2009 . Epoxy composite fibers reinforced with aligned single-walled carbon nanotubes functionalized with generation 0–2 dendritic poly (amidoamine) . Chem. Mater. , 21 : 1471 – 1479 .
  • Anon . 2008 . Standard test method for tensile properties of polymer matrix composite materials . ASTM D3039, ASTM ,
  • Anon . 2008 . Standard test method for compressive properties of polymer matrix composite materials with unsupported gage section by shear . ASTM D3410, ASTM ,
  • Anon . 2007 . Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulting materials . ASTM D790, ASTM ,
  • Anon . 2006 . Standard test method for short-beam strength of polymer matrix composite materials and their laminates . ASTM D2344, ASTM ,
  • Anon . 2005 . Standard test methods for shear propertis of composite materials by the V-notched beam method . ASTM D5379, ASTM ,
  • Rosseli , F. and Santare , M.H. 1997 . Comparison of the short beam shear (SBS) and interlaminar shear device (ISD) tests . Compos. Appl. Sci. Manuf. , 28 : 587 – 594 .
  • Standard , Anon . 2008 . test methods for in-plane shear strength of reinforced plastics . ASTM D3846, ASTM ,
  • Anon . 2007 . Standard test methods for Mode I interlaminar fracture toughness of unidirectional fibre-reinforced polymer matrix composites . ASTM D5528, ASTM ,
  • Anon . 1999 . Standard test methods for plane-strain fracture toughness and strain energy release rate of plastic materials . ASTM D5045, ASTM ,
  • Russell , A.J. and Street , K.N. 1982 . Factors affecting the interlaminar fracture energy of graphite/epoxy laminates , ICCM4, Tokyo .
  • Adams , D.F. , Carlsson , L.A. and Pipes , R.B. 2003 . Experimental Characterization of Advanced Composite Materials , Boca Raton : CRC Press .
  • Frankland , S.J.V. , Caglar , A. , Brenner , D.W. and Griebel , M. 2002 . Molecular simulation of the influence of chemical cross-links on the shear strength of carbon nanotube-polymer interfaces . J. Phys. Chem. B , 106 : 3046 – 3048 .
  • Barber , A.H. , Cohen , S.R. , Eitan , A. , Schadler , L.S. and Wagner , H.D. 2006 . Fracture transitions at a carbon-nanotube/polymer interface . Adv. Mater. , 18 : 83 – 87 .
  • Grujicic , M. , Sun , Y.P. and Koudela , K.L. 2007 . The effect of covalent functionalization of carbon nanotube reinforcements on the atomic-level mechanical properties of poly-vinyl-ester-epoxy . Appl. Surf. Sci. , 253 : 3009 – 3021 .
  • Wang , S.R. , Liang , R. , Wang , B. and Zhang , C. 2008 . Load-transfer in functionalized carbon nanotubes/polymer composites . Chem. Phys. Lett. , 457 : 371 – 375 .
  • Gong , X.Y. , Liu , J. , Baskaran , S. , Voise , R.D. and Young , J.S. 2002 . Surfactant-assisted processing of carbon nanotube/polymer composites . Chem. Mater. , 12 : 1049 – 1052 .
  • Liu , J.Q. , Xiao , T. , Liao , K. and Wu , P. 2007 . Interfacial design of carbon nanotube polymer composites: a hybrid system of noncovalent and covalent functionalizations . Nanotechnology , 18 : 165701 – 165706 .
  • Schadler , L.S. , Ciannaris , S.C. and Ajayan , P.M. 1998 . Load transfer in carbon nanotube epoxy composites . Appl. Phys. Lett. , 73 : 3842 – 3844 .
  • Lourie , O. and Wagner , H.D. 1999 . Evidence of stress transfer and formation of fracture clusters in carbon nanotube-based composites . Compos. Sci. Tech. , 59 : 975 – 977 .
  • Barber , A.H. 2003 . Measurement of carbon nanotube-polymer interfacial strength . Appl. Phys. Lett. , 82 : 4140 – 4142 .
  • Barber , A.H. , Cohen , S.R. , Kenig , S. and Wagner , H.D. 2004 . Interfacial fracture energy measurements for multi-walled carbon nanotubes pulled from a polymer matrix . Compos. Sci. Tech. , 64 : 2283 – 2289 .
  • Haque , A. and Ramasetty , A. 2005 . Theoretical study of stress transfer in carbon nanotube reinforced polymer matrix composites . Compos. Struct. , 71 : 68 – 77 .
  • Gao , X.L. and Li , K. 2005 . A shear-lag model for carbon nanotube-reinforced polymer composites . Int. J. Solid Struct. , 42 : 1649 – 1667 .
  • Cooper , C.A. 2002 . Detachment of nanotubes from a polymer matrix . Appl. Phys. Lett. , 81 : 3873 – 3875 .
  • Wong , M. , Paramsothy , M. , Xu , X.J. , Ren , Y. , Li , S. and Liao , K. 2003 . Physical interactions at carbon nanotube-polymer interface . Polymer , 44 : 7757 – 7764 .
  • Qian , D. and Dickey , E.C. 2000 . Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites . Appl. Phys. Lett. , 76 : 2868 – 2870 .
  • Shen , G.A. , Namilae , S. and Chandra , N. 2006 . Load transfer issues in the tensile and compressive behaviour of multiwall carbon nanotubes . Mater. Sci. Eng. A , 429 : 66 – 73 .
  • Tsai , J.L. and Lu , T.C. 2009 . Investigation the load transfer efficiency in carbon nanotubes reinforced nanocomposites . Compos. Struct. , 90 : 172 – 179 .
  • Lau , K.T. 2003 . Interfacial bonding characteristics of nanotube/polymer composites . Chem. Phys. Lett. , 370 : 399 – 405 .
  • Liao , K. and Li , S. 2001 . Interfacial characteristics of a carbon nanotube-polystyrene composite system . Appl. Phys. Lett. , 79 : 4225 – 4227 .
  • Wagner , H.D. 2002 . Nanotube-polymer adhesion: a mechanics approach . Chem. Phys. Lett. , 361 : 57 – 61 .
  • Xu , X.J. and Thwe , M.M. 2002 . Mechanical properties and interfacial characteristics of carbon-nanotube-reinforced epoxy thin films . Appl. Phys. Lett. , 81 : 2833 – 2835 .
  • Odegard , G.M. , Gates , T.S. , Wise , K.E. , Park , C. and Siochi , E.J. 2003 . Constitutive modelling of nanotube-reinforced polymer composites . Compos. Sci. Tech. , 63 : 1671 – 1687 .
  • Li , C.Y. and Chou , T.W. 2003 . A structural mechanics approach for the analysis of carbon nanotubes . Int. J. Solid Struct. , 40 : 2487 – 2499 .
  • Wan , H. , Delale , F. and Shen , L. 2005 . Effect of CNT length and CNT-matrix interphase in carbon nanotube (CNT) reinforced composites . Mech. Res. Comm. , 32 : 481 – 489 .
  • Zalamea , L. , Kim , H. and Pipes , R.B. 2007 . Stress transfer in multi-walled carbon nanotubes . Compos. Sci. Tech. , 67 : 3425 – 3433 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.