3,149
Views
27
CrossRef citations to date
0
Altmetric
Articles

Modelling temporal variation of fire-occurrence towards the dynamic prediction of human wildfire ignition danger in northeast Spain

ORCID Icon, ORCID Icon &
Pages 385-411 | Received 21 Jan 2018, Accepted 13 Sep 2018, Published online: 28 Dec 2018

References

  • Abbott KN, Leblon B, Staples GC, Maclean DA, Alexander ME. 2007. Fire danger monitoring using RADARSAT‐1 over northern boreal forests. Int J Remote Sens. 28(6):1317–1338. https://doi.org/10.1080/01431160600904956
  • Agencia Estatal de Meteorología (AEMET). 2012. Informe mensual climatológico. Octubre de 2012. Available at:http://www.aemet.es/documentos/es/serviciosclimaticos/vigilancia_clima/resumenes_climat/mensuales/2012/res_mens_clim_2012_10.pdf
  • Allgöwer B, Carlson JD, van Wagtendonk JW. 2003. Introduction to fire danger rating and remote sensing — will remote sensing enhance wildland fire danger rating? In: Chuvieco E, editor. Wildland fire danger estimation and mapping. The role of remote sensing data. Singapore: World Scientific Publishing; pp. 1–19. https://doi.org/10.1142/9789812791177_0001
  • Amatulli G, Rodrigues MJ, Trombetti M, Lovreglio R. 2006. Assessing long-term fire risk at local scale by means of decision tree technique. J Geophys Res Biogeosci. 111:G04S05. https://doi.org/10.1029/2005JG000133
  • Archibald S, Lehmann CER, Gomez-Dans JL, Bradstock RA. 2013. Defining pyromes and global syndromes of fire regimes. Proc Natl Acad Sci USA. 110(16):6442–6447. https://doi.org/10.1073/pnas.1211466110
  • Bar Massada A, Syphard AD, Stewart SI, Radeloff VC. 2013. Wildfire ignition-distribution modelling: a comparative study in the Huron? Manistee National Forest, Michigan, USA. Int J Wildland Fire. 22(2):174. https://doi.org/10.1071/WF11178
  • Calderón Cortés D, Mateo Fernández JF. 2017. Prevención de incendios en labores de recolección de cereal en Castilla-La Mancha. 7° Congreso Forestal Español. Gestion del monte: servicios ambientales y bioeconomía. Available at: http://7cfe.congresoforestal.es/sites/default/files/actas/7CFE01-439.pdf.
  • Carmona A, González ME, Nahuelhual L, Silva J. 2012. Spatio-temporal effects of human drivers on fire danger in Mediterranean Chile. Bosque (Valdivia). 33(3):31–32. https://doi.org/10.4067/S0717-92002012000300016
  • Chaparro D, Piles M, Vall-Llossera M, Camps A. 2016. Surface moisture and temperature trends anticipate drought conditions linked to wildfire activity in the Iberian Peninsula. Eur J Remote Sens. 49(1):955–971. https://doi.org/10.5721/EuJRS20164950
  • Chelli S, Maponi P, Campetella G, Monteverde P, Foglia M, Paris E, Lolis A, Panagopoulos T. 2015. Adaptation of the Canadian fire weather index to Mediterranean forests. Nat Hazards. 75(2):1795–1810. https://doi.org/10.1007/s11069-014-1397-8
  • Chen F, Du Y, Niu S, Zhao J. 2015. Modeling forest lightning fire occurrence in the Daxinganling mountains of Northeastern China with MAXENT. Forests. 6(12):1422–1438. https://doi.org/10.3390/f6051422
  • Chowdhury EH, Hassan QK. 2013. Use of remote sensing-derived variables in developing a forest fire danger forecasting system. Nat Hazards. 67(2):321–334. https://doi.org/10.1007/s11069-013-0564-7
  • Chowdhury EH, Hassan QK. 2015. Development of a new daily-scale forest fire danger forecasting system using remote sensing data. Remote Sens. 7(3):2431–2448. https://doi.org/10.3390/rs70302431
  • Chuvieco E, Aguado I, Yebra M, Nieto H, Salas J, Martín MP, Vilar L, Martínez J, Martín S, Ibarra P, et al. 2010. Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecol Model. 221(1):46–58. https://doi.org/10.1016/j.ecolmodel.2008.11.017
  • Chuvieco E, Aguado I, Jurdao S, Pettinari ML, Yebra M, Salas J, Hantson S, de la Riva J, Ibarra P, Rodrigues M, et al. 2014. Integrating geospatial information into fire risk assessment. Int J Wildland Fire. 23(5):606. https://doi.org/10.1071/WF12052
  • Chuvieco E, Allgöwer B, Salas J. 2003. Integration of physical and human factors in fire danger assessment. In: Chuvieco E, editor. Wildland fire danger estimation and mapping. The role of remote sensing data. Singapore: World Scientific Publishing; pp. 197–218. https://doi.org/10.1142/9789812791177_0007
  • Costafreda-Aumedes S, Comas C, Vega-Garcia C. 2017. Human-caused fire occurrence modelling in perspective: a review. Int J Wildland Fire. 26(12):983. https://doi.org/10.1071/WF17026
  • Costafreda-Aumedes S, Vega-Garcia C, Comas C. 2018. Improving fire season definition by optimized temporal modelling of daily human-caused ignitions. J Environ Manage. 217:90–99.
  • Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ. 2011. A statistical explanation of MaxEnt for ecologists. Divers Distrib. 17(1):43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x
  • Food and Agriculture Organization (FAO). 2006. Fire management: voluntary guidelines. Principles and strategic actions. Fire Management Working Paper 17. Rome, Italy: FAO. Available at http://www.fao.org/docrep/pdf/009/j9255e/j9255e00.pdf
  • Franklin J. 2010. Mapping species distributions. New York: Cambridge University Press.
  • Garcia CV, Woodard PM, Titus SJ, Adamowicz WL, Lee BS. 1995. A logit model for predicting the daily occurrence of human caused forest-fires. Int J Wildland Fire. 5(2):101. https://doi.org/10.1071/WF9950101
  • Guangmeng G, Mei Z. 2004. Using MODIS land surface temperature to evaluate forest fire risk of Northeast China. IEEE Geosci Remote Sens Lett. 1(2):98–100. https://doi.org/10.1109/LGRS.2004.826550
  • Hanley JA, McNeil BJ. 1982. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 143(1):29–36.
  • Jolly WM, Cochrane MA, Freeborn PH, Holden ZA, Brown TJ, Williamson GJ, Bowman DMJS. 2015. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 6:7537. https://doi.org/10.1038/ncomms8537
  • Koutsias N, Allgöwer B, Kalabokidis K, Mallinis G, Balatsos P, Goldammer J. 2016. Fire occurrence zoning from local to global scale in the European Mediterranean basin: implications for multi-scale fire management and policy. iForest. 9(2):195–204. https://doi.org/10.3832/ifor1513-008
  • Leone V, Koutsias N, Martínez J, Vega-García C, Allgöwer B, Lovreglio R. 2003. The human factor in fire danger assessment. In: Chuvieco E, editor. Wildland fire danger estimation and mapping. The role of remote sensing data. Singapore: World Scientific Publishing; pp. 143–196.
  • Leone V, Lovreglio R, Martín MP, Martínez J, Vilar L. 2009. Human factors of fire occurrence in the Mediterranean. In: Chuvieco E, editor. Earth observation of wildland fires in Mediterranean ecosystems. Berlin: Springer Berlin Heidelberg; pp. 149–170. https://doi.org/10.1007/978-3-642-01754-4_11
  • Maingi JK, Henry MC. 2007. Factors influencing wildfire occurrence and distribution in eastern Kentucky, USA. Int J Wildland Fire. 16(1):23. https://doi.org/10.1071/WF06007
  • Martínez J, Chuvieco E, Martín MP. 2004. Estimating human risk factors in wildland fires in Spain using logistic regression. International symposium on fire economics, planning and policy: A global vision. April 9–22; Córdoba: University of Córdoba.
  • Martínez J, Vega-Garcia C, Chuvieco E. 2009. Human-caused wildfire risk rating for prevention planning in Spain. J Environ Manage. 90(2):1241–1252. https://doi.org/10.1016/j.jenvman.2008.07.005
  • Martínez de Aragón J, Riera P, Giergiczny M, Colinas C. 2011. Value of wild mushroom picking as an environmental service. Forest Pol Econ. 13(6):419–424. https://doi.org/10.1016/j.forpol.2011.05.003
  • Martínez-Fernández J, Chuvieco E, Koutsias N. 2013. Modelling long-term fire occurrence factors in Spain by accounting for local variations with geographically weighted regression. Nat Hazards Earth Syst Sci. 13(2):311–327. https://doi.org/10.5194/nhess-13-311-2013
  • McCune B, Grace JB, Urban DL. 2002. Analysis of ecological communities. Glenden Beach: MJM Software Design.
  • Ministerio de Agricultura Pesca y Alimentación (MAPA). 2006. Análisis del Parque Nacional de Tractores Agrícolas. 2005–2006. Madrid (Spain): Secretaría General de Agricultura y Alimentación. Available at: https://www.mapa.gob.es/va/agricultura/publicaciones/parque_tractores_tcm39-57883.pdf
  • Ministerio de Agricultura y Pesca Alimentación y Medio Ambiente (MAPAMA). 2012. Los Incendios Forestales en España. Decenio 2001–2010. Madrid (Spain): Área de Defensa contra lncendios Forestales (ADCIF) del Ministerio de Agricultura, Alimentación y Medio Ambiente. Available at: http://www.prodetur.es/prodetur/AlfrescoFileTransferServlet?action=download&ref=a318783c-223d-4540-86ed-3837e0841679
  • Moreno MV, Malamud BD, Chuvieco EA. 2011. Wildfire frequency-area statistics in Spain. Procedia Environ Sci. 7:182–187. https://doi.org/10.1016/j.proenv.2011.07.032
  • National Wildfire Coordinating Group (NWCG). 2018. Glossary of wildland fire terminology. Available at: https://www.nwcg.gov/glossary/a-z.
  • Ordóñez C, Saavedra A, Rodríguez-Pérez JR, Castedo-Dorado F, Covián E. 2012. Using model-based geostatistics to predict lightning-caused wildfires. Environ Model Softw. 29(1):44–50. https://doi.org/10.1016/j.envsoft.2011.10.004
  • Padilla M, Vega-García C. 2011. On the comparative importance of fire danger rating indices and their integration with spatial and temporal variables for predicting daily human-caused fire occurrences in Spain. Int J Wildland Fire. 20(1):46. https://doi.org/10.1071/WF09139
  • Parisien M-A, Moritz MA. 2009. Environmental controls on the distribution of wildfire at multiple spatial scales. Ecol Monogr. 79(1):127–154. https://doi.org/10.1890/07-1289.1
  • Pearson RG, Raxworthy CJ, Nakamura M, Townsend Peterson A. 2007. Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. J Biogeogr. 34:102–117.
  • Phillips SJ, Anderson RP, Schapire RE. 2006. Maximum entropy modeling of species geographic distributions. Ecol Model. 190(3–4):231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
  • Phillips SJ, Dudík M, Schapire RE. 2004. A maximum entropy approach to species distribution modeling. Twenty-First International Conference on Machine Learning - ICML ’04. ACM Press, New York, NY; p. 83. https://doi.org/10.1145/1015330.1015412
  • Renard Q, Pélissier R, Ramesh BR, Kodandapani N. 2012. Environmental susceptibility model for predicting forest fire occurrence in the Western Ghats of India. Int J Wildland Fire. 21(4):368. https://doi.org/10.1071/WF10109
  • Rodrigues M, de la Riva J. 2014a. An insight into machine-learning algorithms to model human-caused wildfire occurrence. Environ Model Softw. 57:192–201. https://doi.org/10.1016/j.envsoft.2014.03.003
  • Rodrigues M, de la Riva J. 2014b. Assessing the effect on fire risk modeling of the uncertainty in the location and cause of forest fires. In: Advances in forest fire research. Coimbra: Imprensa da Universidade de Coimbra; pp. 1061–1072. https://doi.org/10.14195/978-989-26-0884-6_116
  • Rodrigues M, de la Riva J, Fotheringham S. 2014. Modeling the spatial variation of the explanatory factors of human-caused wildfires in Spain using geographically weighted logistic regression. Appl Geogr. 48:52–63. https://doi.org/10.1016/j.apgeog.2014.01.011
  • Rodrigues M, Jiménez A, de la Riva J. 2016. Analysis of recent spatial–temporal evolution of human driving factors of wildfires in Spain. Nat Hazards. 84(3):2049–2070. https://doi.org/10.1007/s11069-016-2533-4
  • Salis M, Ager AA, Finney MA, Arca B, Spano D. 2014. Analyzing spatiotemporal changes in wildfire regime and exposure across a Mediterranean fire-prone area. Nat Hazards. 71(3):1389–1418. https://doi.org/10.1007/s11069-013-0951-0
  • San Miguel-Ayanz J, Carlson JD, Alexander M, Tolhurst K, Morgan G, Sneeuwjagt R, Dudley M. 2003. Current methods to assess fire danger potential. In: Chuvieco E, editor. Wildland fire danger estimation and mapping. The role of remote sensing data. Singapore: World Scientific.
  • San-Miguel Ayanz J, Camia A. 2009. Forest fires at a glance: facts, figures and trends in the EU. In: Birot Y, editor. Living with wildfires: what science can tell us. A contribution to the science-policy dialogue. Joensuu, Finland: European Forest Institute; pp. 11–18.
  • Sesnie SE, Gessler PE, Finegan B, Thessler S. 2008. Integrating Landsat TM and SRTM-DEM derived variables with decision trees for habitat classification and change detection in complex neotropical environments. Remote Sens Environ. 112(5):2145–2159. https://doi.org/10.1016/j.rse.2007.08.025
  • Syphard AD, Clarke KC, Franklin J. 2007. Simulating fire frequency and urban growth in southern California coastal shrublands. Landscape Ecol. 22(3):431–445. https://doi.org/10.1007/s10980-006-9025-y
  • Tardío J, Pardo-de-Santayana M, Morales R. 2006. Ethnobotanical review of wild edible plants in Spain. Bot J Linn Soc. 152(1):27–71. https://doi.org/10.1111/j.1095-8339.2006.00549.x
  • Vasconcelos MJP, Silva S, Tomé M, Alvim M, Pereira JMC. 2001. Spatial prediction of fire ignition probabilities: comparing logistic regression and neural networks. Photogramm Eng Remote Sens. 5:101–111.
  • Vélez R. 2001. Fire situation in Spain. In: Goldammer JG, Mutch RW, Pugliese P, editors. Global forest fire assessment 1990-2001. Roma: FAO.
  • Verdú F, Salas J, Vega-García C. 2012. A multivariate analysis of biophysical factors and forest fires in Spain, 1991–2005. Int J Wildland Fire. 21(5):498–509.
  • Vilar L, Camia A, San-Miguel-Ayanz J, Martín MP. 2016. Modeling temporal changes in human-caused wildfires in Mediterranean Europe based on land use-land cover interfaces. Forest Ecol Manage. 378:68–78. https://doi.org/10.1016/j.foreco.2016.07.020
  • Vilar L, Gómez I, Martínez-Vega J, Echavarría P, Riaño D, Martín MP. 2016. Multitemporal modelling of socio-economic wildfire drivers in central Spain between the 1980s and the 2000s: comparing generalized linear models to machine learning algorithms. PLoS One. 11(8):e0161344.
  • Vilar del Hoyo L, Martín Isabel MP, Martínez Vega J. 2008. Empleo de técnicas de regresión logística para la obtención de modelos de riesgo humano de incendio forestal a escala regional. Boletín de la Asociación de Geógrafos Españoles, 47(2008): 5–29.
  • Zhou, X-H, McClish DK, Obuchowski NA. 2009. Statistical methods in diagnostic medicine. Vol. 569. John Wiley & Sons. Hoboken, New Jersey.
  • Zumbrunnen T, Pezzatti GB, Menéndez P, Bugmann H, Bürgi M, Conedera M. 2011. Weather and human impacts on forest fires: 100 years of fire history in two climatic regions of Switzerland. Forest Ecol Manage. 261(12):2188–2199. https://doi.org/10.1016/j.foreco.2010.10.009