2,992
Views
28
CrossRef citations to date
0
Altmetric
Articles

Can satellite-based data substitute for surveyed data to predict the spatial probability of forest fire? A geostatistical approach to forest fire in the Republic of Korea

ORCID Icon, , , ORCID Icon &
Pages 719-739 | Received 06 Jun 2018, Accepted 27 Oct 2018, Published online: 23 Jan 2019

References

  • Alves DB, Pérez-Cabello F. 2017. Multiple remote sensing data sources to assess spatio-temporal patterns of fire incidence over Campos Amazônicos Savanna Vegetation Enclave (Brazilian Amazon). Sci Total Environ. 601–602:142–158.
  • Ambrey CL, Fleming CM, Manning M. 2017. Forest fire danger, life satisfaction and feelings of safety: evidence from Australia. Int J Wildland Fire. 26(3):240–248.
  • Austin MP. 2002. Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecol Model. 157(2-3):101–118.
  • Barbero R, Abatzoglou JT, Larkin NK, Kolden CA, Stocks B. 2015. Climate change presents increased potential for very large fires in the contiguous United States. Int J Wildland Fire. 24(7):892–899.
  • Boria RA, Olson LE, Goodman SM, Anderson RP. 2014. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol Model. 275:73–77.
  • Chou YH, Minnich RA, Salazar LA, Power JD, Dezzani RJ. 1990. Spatial autocorrelation of wildfire distribution in the Idyllwild quadrangle, San Jacinto Mountain, California. Photogramm Eng Remote Sens. 56(1):1507–1513.
  • Chuvieco E, Aguado I, Jurdao S, Pettinari ML, Yebra M, Salas J, Hantson S, de la Riva J, Ibarra P, Rodrigues M, et al. 2014. Integrating geospatial information into fire risk assessment. Int J Wildland Fire. 23(5):606–619.
  • Clark JS, Royall PD, Chumbley C. 1996. The role of fire during climate change in an eastern deciduous forest at Devil’s Bathtub, New York. Ecology. 77(7):2148–2166.
  • Cracknell MJ, Reading AM. 2014. Geological mapping using remote sensing data: a comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information. Comput Geosci. 63:22–33.
  • Davis R, Yang Z, Yost A, Belongie C, Cohen W. 2017. The normal fire environment—modeling environmental suitability for large forest wildfires using past, present, and future climate normals. Forest Ecol Manage. 390:173–186.
  • Dormann CF. 2007. Effects of incorporating spatial autocorrelation into the analysis of species distribution data. Global Ecol Biogeogr. 16(2):129–138.
  • Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ. 2011. A statistical explanation of MaxEnt for ecologists. Divers Distrib. 17(1):43–57.
  • Flannigan MD, Stocks BJ, Wotton BM. 2000. Climate change and forest fires. Sci Total Environ. 262(3):221–229.
  • Fielding AH, Bell JF. 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv. 24(1):38–49.
  • Fornacca D, Ren G, Xiao W. 2017. Performance of three MODIS fire products (MCD45A1, MCD64A1, MCD14ML), and ESA Fire_CCI in a mountainous area of Northwest Yunnan, China, characterized by frequent small fires. Remote Sens. 9(11):1131.
  • Gao Y, He Q, Liu Y, Zhang L, Wang H, Cai E. 2016. Imbalance in spatial accessibility to primary and secondary schools in China: guidance for education sustainability. Sustainability. 8(12):1236.
  • Gedalof ZE, Peterson DL, Mantua NJ. 2005. Atmospheric, climatic, and ecological controls on extreme wildfire years in the northwestern United States. Ecol Appl. 15(1):154–174.
  • Giglio L, Schroeder W, Justice CO. 2016. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens Environ. 178:31–41.
  • Goldammer JG, Stocks BJ, Sukhinin AI, Ponomarev E. 2013. Current fire regimes, impacts and likely changes-II. Forest fires in Russia—past and current trends. In Vegetation fires and global change: challenges for concerted international action: white paper directed to the United Nations and international organizations; 51–78. Germany: Kessel Publishing House.
  • Iliadis LS. 2005. A decision support system applying an integrated fuzzy model for long-term forest fire risk estimation. Environ Model Softw. 20(5):613–621.
  • Jolly WM, Cochrane MA, Freeborn PH, Holden ZA, Brown TJ, Williamson GJ, Bowman DM. 2015. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat Commun. 6:7537
  • Kharuk VI, Dvinskaya ML, Petrov IA, Im ST, Ranson KJ. 2016. Larch forests of middle Siberia: long-term trends in fire return intervals. Reg Environ Change. 16(8):2389–2397.
  • Kim GS, Lim CH, Kim SJ, Lee J, Son Y, Lee WK. 2017. Effect of national-scale afforestation on forest water supply and soil loss in South Korea, 1971-2010. Sustainability. 9(6):1017.
  • Kim HG, Lee DK, Park C, Kil S, Son Y, Park JH. 2015. Evaluating landslide hazards using RCP 4.5 and 8.5 scenarios. Environ Earth Sci. 73(3):1385–1400.
  • Kim M, Kwak HB, Lee WK, Won MS, Koo KS. 2011. Study on regional spatial autocorrelation of forest fire occurrence in Korea. J Korean Soc Geospatial Inf Syst. 19(2):29–37. In Korean.
  • Kim M, Lee WK, Kim YS, Lim CH, Song C, Park T, Son Y, Son YM. 2016. Impact of thinning intensity on the diameter and height growth of Larix kaempferi stands in central Korea. Forest Sci Technol. 12(2):77–87.
  • Kissling WD, Carl G. 2008. Spatial autocorrelation and the selection of simultaneous autoregressive models. Global Ecol Biogeogr. 17(1):59–71.
  • [KFS] Korea Forest Service. 2016. Statistical yearbook of forestry. Deajeon (Korea): Korea Forest Service.
  • Kwak H, Lee WK, Saborowski J, Lee SY, Won MS, Koo KS, Lee MB, Kim SN. 2012. Estimating the spatial pattern of human-caused forest fires using a generalized linear mixed model with spatial autocorrelation in South Korea. Int J Geogr Inf Sci. 26(9):1589–1602.
  • Lee B, Park PS, Chung J. 2006. Temporal and spatial characteristics of forest fires in South Korea between 1970 and 2003. Int J Wildland Fire. 15(3):389–396.
  • Lim CH, Moon JY, Lim YJ, Kim SJ, Lee WK. 2015a. Estimating spatio-temporal distribution of climate factors in Andong Dam basin. J Korean Soc Geospatial Inf Syst. 23(4):57–65. In Korean.
  • Lim CH, Ryu DH, Song C, Zhu Y, Lee WK, Kim MS. 2015b. Estimating precise spatio-temporal distribution of weather condition using semi-variogram in small scale recreation forest. J Korean Assoc Geogr Inf Stud. 18(3):63–75. In Korean.
  • Lim CH, Kim SH, Choi Y, Kafatos MC, Lee WK. 2017a. Estimation of the virtual water content of main crops on the Korean Peninsula using multiple regional climate models and evapotranspiration methods. Sustainability. 9(7):1172.
  • Lim CH, Choi Y, Kim M, Jeon SW, Lee WK. 2017b. Impact of deforestation on agro-environmental variables in cropland, North Korea. Sustainability. 9(8):1354.
  • Lim CH, Yoo S, Choi Y, Jeon SW, Son Y, Lee WK. 2018. Assessing climate change impact on forest habitat suitability and diversity in the Korean Peninsula. Forests. 9(5):259.
  • McCoy VM, Burn CR. 2005. Potential alteration by climate change of the forest-fire regime in the boreal forest of central Yukon Territory. Arctic. 58:276–285.
  • Moris JV, Vacchiano G, Enri SR, Lonati M, Motta R, Ascoli D. 2017. Resilience of European larch (Larix decidua Mill.) forests to wildfires in the western Alps. New Forests. 48(5):663–683.
  • Oliveira S, Oehler F, San-Miguel-Ayanz J, Camia A, Pereira JM. 2012. Modeling spatial patterns of fire occurrence in Mediterranean Europe using multiple regression and random forest. Forest Ecol Manage. 275:117–129.
  • Ord JK, Getis A. 2010. Local Spatial Autocorrelation Statistics: Distributional Issues and an Application. Geogra Anal. 27(4):286–306.
  • Pereira P, Cerdà A, Úbeda X, Mataix‐Solera J, Arcenegui V, Zavala LM. 2015. Modelling the impacts of wildfire on ash thickness in a short‐term period. Land Degrad Dev. 26(2):180–192.
  • Phillips SJ, Anderson RP, Schapire RE. 2006. Maximum entropy modeling of species geographic distributions. Ecol Model. 190(3-4):231–259.
  • Phillips SJ, Dudík M. 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography. 31(2):161–175.
  • Piñol J, Terradas J, Lloret F. 1998. Climate warming, wildfire hazard, and wildfire occurrence in coastal eastern Spain. Clim Change. 38(3):345–357.
  • Ponomarev EI, Kharuk VI, Ranson KJ. 2016. Wildfires dynamics in Siberian larch forests. Forests. 7(12):125.
  • Randerson JT, Liu H, Flanner MG, Chambers SD, Jin Y, Hess PG, Pfister G, Mack MC, Treseder KK, Welp LR, et al. 2006. The impact of boreal forest fire on climate warming. Science. 314(5802):1130–1132.
  • Reid CE, Brauer M, Johnston FH, Jerrett M, Balmes JR, Elliott CT. 2016. Critical review of health impacts of wildfire smoke exposure. Environ Health Perspect. 124(9):1334
  • Roy DP, Boschetti L, Justice CO, Ju J. 2008. The collection 5 MODIS burned area product—global evaluation by comparison with the MODIS active fire product. Remote Sens Environ. 112(9):3690–3707.
  • Schroeder W, Oliva P, Giglio L, Csiszar IA. 2014. The New VIIRS 375 m active fire detection data product: algorithm description and initial assessment. Remote Sens Environ. 14385–96.
  • Stephens SL, Ruth LW. 2005. Federal forest‐fire policy in the United States. Ecol Appl. 15(2):532–542.
  • Sunar F, Özkan C. 2001. Forest fire analysis with remote sensing data. Int J Remote Sens. 22(12):2265–2277.
  • Sung MK, Lim GH, Choi EH, Lee YY, Won MS, Koo KS. 2010. Climate change over Korea and its relation to the forest fire occurrence. Atmosphere. 20(1):27–35.
  • Tien Bui D, Le KTT, Nguyen VC, Le HD, Revhaug I. 2016. Tropical forest fire susceptibility mapping at the Cat Ba National Park Area, Hai Phong City, Vietnam, using GIS-based kernel logistic regression. Remote Sens. 8(4):347.
  • Vilar L, Gómez I, Martínez-Vega J, Echavarría P, Riaño D, Martín MP. 2016. Multitemporal modelling of socio-economic wildfire drivers in central Spain between the 1980s and the 2000s: comparing generalized linear models to machine learning algorithms. PLoS One. 11(8):e0161344
  • Wotton BM, Martell DL, Logan KA. 2003. Climate change and people-caused forest fire occurrence in Ontario. Clim Change. 60(3):275–295.
  • Wotton BM, Nock CA, Flannigan MD. 2010. Forest fire occurrence and climate change in Canada. Int J Wildland Fire. 19(3):253–271.