2,526
Views
70
CrossRef citations to date
0
Altmetric
Articles

Novel hybrids of adaptive neuro-fuzzy inference system (ANFIS) with several metaheuristic algorithms for spatial susceptibility assessment of seismic-induced landslide

ORCID Icon, ORCID Icon, ORCID Icon, , , & show all
Pages 1879-1911 | Received 23 Feb 2019, Accepted 24 Jul 2019, Published online: 16 Aug 2019

References

  • Abdul-Rahman OA, Munetomo M, Akama K. 2013. An adaptive parameter binary-real coded genetic algorithm for constraint optimization problems: performance analysis and estimation of optimal control parameters. Inf Sci. 233:54–86.
  • Ahmadlou M, Karimi M, Alizadeh S, Shirzadi A, Parvinnejhad D, Shahabi H, Panahi M. 2018. Flood susceptibility assessment using integration of adaptive network-based fuzzy inference system (ANFIS) and biogeography-based optimization (BBO) and BAT algorithms (BA). Geocarto Int.:1–21.
  • Akgun A, Sezer EA, Nefeslioglu HA, Gokceoglu C, Pradhan B. 2012. An easy-to-use MATLAB program (MamLand) for the assessment of landslide susceptibility using a Mamdani fuzzy algorithm. Comput Geosci. 38:23–34.
  • Beckers R, Deneubourg J-L, Goss S. 1992. Trails and U-turns in the selection of a path by the ant Lasius niger. J Theor Biol. 159(4):397–415.
  • Beven KJ, Kirkby MJ. 1979. A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrol Sci J. 24(1):43–69.
  • Binh Thai P, Dieu Tien B, Prakash I. 2018a. Bagging based support vector machines for spatial prediction of landslides. Environ Earth Sci. 77:146.
  • Binh Thai P, Indra P, Dieu Tien B. 2018b. Spatial prediction of landslides using a hybrid machine learning approach based on random subspace and classification and regression trees. Geomorphology. 303:256–270.
  • Binh Thai P, Prakash I, Jaafari A, Dieu Tien B. 2018c. Spatial prediction of rainfall-induced landslides using aggregating one-dependence estimators classifier. J Indian Soc Remote Sens. 46:1457–1470.
  • Bui DT, Bui Q-T, Nguyen Q-P, Pradhan B, Nampak H, Trinh PT. 2017a. A hybrid artificial intelligence approach using GIS-based neural-fuzzy inference system and particle swarm optimization for forest fire susceptibility modeling at a tropical area. Agric Forest Meteorol. 233:32–44.
  • Bui DT, Tuan TA, Hoang N-D, Thanh NQ, Nguyen DB, Van Liem N, Pradhan B. 2017b. Spatial prediction of rainfall-induced landslides for the Lao Cai area (Vietnam) using a hybrid intelligent approach of least squares support vector machines inference model and artificial bee colony optimization. Landslides. 14:447–458.
  • Bui DT, Tuan TA, Klempe H, Pradhan B, Revhaug I. 2016. Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides. 13:361–378.
  • Chen W, Chai H, Sun X, Wang Q, Ding X, Hong H. 2016. A GIS-based comparative study of frequency ratio, statistical index and weights-of-evidence models in landslide susceptibility mapping. Arab J Geosci. 9(3):204.
  • Chen W, Panahi M, Khosravi K, Pourghasemi HR, Rezaie F, Parvinnezhad D. 2019a. Spatial prediction of groundwater potentiality using ANFIS ensembled with teaching-learning-based and biogeography-based optimization. J Hydrol. 572:435–448.
  • Chen W, Panahi M, Tsangaratos P, Shahabi H, Ilia I, Panahi S, Li S, Jaafari A, Ahmad BB. 2019b. Applying population-based evolutionary algorithms and a neuro-fuzzy system for modeling landslide susceptibility. Catena. 172:212–231.
  • Chen W, Pourghasemi HR, Panahi M, Kornejady A, Wang J, Xie X, Cao S. 2017. Spatial prediction of landslide susceptibility using an adaptive neuro-fuzzy inference system combined with frequency ratio, generalized additive model, and support vector machine techniques. Geomorphology. 297:69–85.
  • Chen W, Shahabi H, Shirzadi A, Hong H, Akgun A, Tian Y, Liu J, Zhu A-X, Li S. 2018a. Novel hybrid artificial intelligence approach of bivariate statistical-methods-based kernel logistic regression classifier for landslide susceptibility modeling. Bull Eng Geol Environ.:1–23.
  • Chen W, Shahabi H, Zhang S, Khosravi K, Shirzadi A, Chapi K, Pham B, Zhang T, Zhang L, Chai H, et al. 2018b. Landslide susceptibility modeling based on GIS and novel bagging-based kernel logistic regression. Appl Sci. 8(12):2540.
  • Chen W, Tsangaratos P, Ilia I, Duan Z, Chen X. 2019c. Groundwater spring potential mapping using population-based evolutionary algorithms and data mining methods. Sci Total Environ. 684:31–49.
  • Chen W, Zhao X, Shahabi H, Shirzadi A, Khosravi K, Chai H, Zhang S, Zhang L, Ma J, Chen Y. 2019d. Spatial prediction of landslide susceptibility by combining evidential belief function, logistic regression and logistic model tree. Geocarto Int.:1–25.
  • Cheng J, Wu Z, Liu J, Jiang C, Xu X, Fang L, Zhao X, Feng W, Liu R, Liang J, Yang T. 2015. Preliminary report on the 3 August 2014, M w 6.2/M s 6.5 Ludian, Yunnan–Sichuan border, southwest China, earthquake. Seismol Res Lett. 86(3):750–763.
  • Clerc M, Kennedy J. 2002. The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evol Comput. 6(1):58–73.
  • Das S, Abraham A, Chakraborty UK, Konar A. 2009. Differential evolution using a neighborhood-based mutation operator. IEEE Trans Evol Comput. 13(3):526–553.
  • Dehnavi A, Aghdam IN, Pradhan B, Varzandeh M, Morshed H. 2015. A new hybrid model using step-wise weight assessment ratio analysis (SWARA) technique and adaptive neuro-fuzzy inference system (ANFIS) for regional landslide hazard assessment in Iran. Catena. 135:122–148.
  • Demir G, Aytekin M, Akgun A. 2015. Landslide susceptibility mapping by frequency ratio and logistic regression methods: an example from Niksar–Resadiye (Tokat, Turkey). Arab J Geosci. 8(3):1801–1812.
  • Dieu Tien B, Shahabi H, Shirzadi A, Chapi K, Alizadeh M, Chen W, Mohammadi A, Bin Ahmad B, Panahi M, Hong H, et al. 2018a. Landslide detection and susceptibility mapping by AIRSAR data using support vector machine and index of entropy models in Cameron Highlands, Malaysia. Remote Sens. 10:1527.
  • Dieu Tien B, Shahabi H, Shirzadi A, Chapi K, Nhat-Duc H, Binh Thai P, Quang-Thanh B, Chuyen-Trung T, Panahi M, Bin Ahamd B, et al. 2018b. A novel integrated approach of relevance vector machine optimized by imperialist competitive algorithm for spatial modeling of shallow landslides. Remote Sens. 10:1538.
  • Dixon B. 2005. Applicability of neuro-fuzzy techniques in predicting ground-water vulnerability: a GIS-based sensitivity analysis. J Hydrol. 309(1–4):17–38.
  • Dorigo M, Blum C. 2005. Ant colony optimization theory: a survey. Theor Comput Sci. 344(2–3):243–278.
  • Dou J, Yunus AP, Bui DT, Merghadi A, Sahana M, Zhu Z, Chen C-W, Khosravi K, Yang Y, Pham BT. 2019. Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan. Sci Total Environ. 662:332–346.
  • Ercanoglu M, Gokceoglu C. 2002. Assessment of landslide susceptibility for a landslide-prone area (north of Yenice, NW Turkey) by fuzzy approach. Environ Geol. 41:720–730.
  • Ercanoglu M, Gokceoglu C. 2004. Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (West Black Sea Region, Turkey). Eng Geol. 75(3–4):229–250.
  • Gao W, Dimitrov D, Abdo H. 2018a. Tight independent set neighborhood union condition for fractional critical deleted graphs and ID deleted graphs. Discrete Continuous Dyn Syst S. 12:711–721.
  • Gao W, Guirao JLG, Abdel-Aty M, Xi W. 2019. An independent set degree condition for fractional critical deleted graphs. Discrete Continuous Dyn Syst S. 12:877–886.
  • Gao W, Guirao JLG, Basavanagoud B, Wu J. 2018b. Partial multi-dividing ontology learning algorithm. Inf Sci. 467:35–58.
  • Gao W, Wang W, Dimitrov D, Wang Y. 2018c. Nano properties analysis via fourth multiplicative ABC indicator calculating. Arab J Chem. 11(6):793–801.
  • Gao W, Wu H, Siddiqui MK, Baig AQ. 2018d. Study of biological networks using graph theory. Saudi J Biol Sci. 25(6):1212–1219.
  • Holland JH. 1975. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. Ann Arbor (MI): University of Michigan Press.
  • Hong H, Naghibi SA, Pourghasemi HR, Pradhan B. 2016a. GIS-based landslide spatial modeling in Ganzhou City, China. Arab J Geosci. 9(2):112.
  • Hong H, Panahi M, Shirzadi A, Ma T, Liu J, Zhu A-X, Chen W, Kougias I, Kazakis N. 2018. Flood susceptibility assessment in Hengfeng area coupling adaptive neuro-fuzzy inference system with genetic algorithm and differential evolution. Sci Total Environ. 621:1124–1141.
  • Hong H, You J, Bi X. 2016b. The Ludian earthquake of 3 August 2014. Geomat Nat Hazard Risk. 7(2):450–457.
  • Jaafari A, Najafi A, Pourghasemi H, Rezaeian J, Sattarian A. 2014. GIS-based frequency ratio and index of entropy models for landslide susceptibility assessment in the Caspian forest, northern Iran. Int J Environ Sci Technol. 11(4):909–926.
  • Jaafari A, Panahi M, Pham BT, Shahabi H, Bui DT, Rezaie F, Lee S. 2019. Meta optimization of an adaptive neuro-fuzzy inference system with grey wolf optimizer and biogeography-based optimization algorithms for spatial prediction of landslide susceptibility. Catena. 175:430–445.
  • Jang J-S. 1993. ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern. 23(3):665–685.
  • Kennedy J. 2010. Particle swarm optimization. Encyclopedia of machine learning. Berlin: Springer. 10:p. 760–766.
  • Lee S, Hong S-M, Jung H-S. 2017. A support vector machine for landslide susceptibility mapping in Gangwon Province, Korea. Sustainability. 9(1):48.
  • Li L, Liu R, Pirasteh S, Chen X, He L, Li J. 2017. A novel genetic algorithm for optimization of conditioning factors in shallow translational landslides and susceptibility mapping. Arab J Geosci. 10(9):209.
  • Mahapatra S, Daniel R, Dey DN, Nayak SK. 2015. Induction motor control using PSO-ANFIS. Proced Comput Sci. 48:753–768.
  • Mitchell M. 1998. An introduction to genetic algorithms. Massachusetts: MIT press.
  • Moayedi H, Huat BB, Mohammad Ali TA, Asadi A, Moayedi F, Mokhberi M. 2011. Preventing landslides in times of rainfall: case study and FEM analyses. Disaster Prev Manage. 20(2):115–124.
  • Moayedi H, Mehdi R, Abolhasan S, Wan AWJ, Safuan ARA. 2019a. Optimization of ANFIS with GA and PSO estimating α in driven shafts. Eng Comput. 35:1–12; https://doi.org/10.1007/s00366-018-00694-w.
  • Moayedi H, Mosallanezhad M, Mehrabi M, Safuan ARA, Biswajeet P. 2019b. Modification of landslide susceptibility mapping using optimized PSO-ANN technique. Engineering with Computers. 35(3):p. 967–984.
  • Moore ID, Grayson R, Ladson A. 1991. Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrol Process. 5(1):3–30.
  • Nath SK. 2004. Seismic hazard mapping and microzonation in the Sikkim Himalaya through GIS integration of site effects and strong ground motion attributes. Nat Hazard. 31:319–342.
  • Nguyen H, Mehrabi M, Kalantar B, Moayedi H, Mu’azu MA. 2019. Potential of hybrid evolutionary approaches for assessment of geo-hazard landslide susceptibility mapping. Geomat Nat Hazard Risk. 10(1):1667–1693.
  • Nourani V, Pradhan B, Ghaffari H, Sharifi SS. 2014. Landslide susceptibility mapping at Zonouz Plain, Iran using genetic programming and comparison with frequency ratio, logistic regression, and artificial neural network models. Nat Hazard. 71(1):523–547.
  • Oh H-J, Kim Y-S, Choi J-K, Park E, Lee S. 2011. GIS mapping of regional probabilistic groundwater potential in the area of Pohang City, Korea. J Hydrol. 399(3–4):158–172.
  • Pham BT, Shirzadi A, Bui DT, Prakash I, Dholakia M. 2018. A hybrid machine learning ensemble approach based on a radial basis function neural network and rotation forest for landslide susceptibility modeling: a case study in the Himalayan area, India. Int J Sediment Res. 33(2):157–170.
  • Polykretis C, Chalkias C, Ferentinou M. 2019. Adaptive neuro-fuzzy inference system (ANFIS) modeling for landslide susceptibility assessment in a Mediterranean hilly area. Bull Eng Geol Environ. 78(2):1173–1187.
  • Pourghasemi H, Pradhan B, Gokceoglu C, Moezzi KD. 2013. A comparative assessment of prediction capabilities of Dempster–Shafer and weights-of-evidence models in landslide susceptibility mapping using GIS. Geomat Nat Hazard Risk. 4(2):93–118.
  • Pradhan B. 2010. Landslide susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches. J Indian Soc Remote Sens. 38(2):301–320.
  • Regmi AD, Devkota KC, Yoshida K, Pradhan B, Pourghasemi HR, Kumamoto T, Akgun A. 2014. Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya. Arab J Geosci. 7(2):725–742.
  • Regmi AD, Dhital MR, Zhang J-Q, Su L-J, Chen X-Q. 2016. Landslide susceptibility assessment of the region affected by the 25 April 2015 Gorkha earthquake of Nepal. J Mt Sci. 13(11):1941–1957.
  • Rezaie F, Panahi M. 2015. GIS modeling of seismic vulnerability of residential fabrics considering geotechnical, structural, social and physical distance indicators in Tehran using multi-criteria decision-making techniques. Nat Hazard Earth Syst Sci. 15(3):461–474.
  • Saeidian B, Mesgari MS, Ghodousi M. 2016. Evaluation and comparison of genetic algorithm and bees algorithm for location–allocation of earthquake relief centers. Int J Disaster Risk Reduct. 15:94–107.
  • Sheta A, Turabieh H. 2006. A comparison between genetic algorithms and sequential quadratic programming in solving constrained optimization problems. ICGST Int J Artif Intell Mach Learn (AIML). 6:67–74.
  • Shirzadi A, Soliamani K, Habibnejhad M, Kavian A, Chapi K, Shahabi H, Chen W, Khosravi K, Binh Thai P, Pradhan B, et al. 2018. Novel GIS based machine learning algorithms for shallow landslide susceptibility mapping. Sensors. (11):3777.
  • Storn R. 2008. Differential evolution research–trends and open questions. In: Advances in differential evolution. Berlin: Springer; p. 1–31.
  • Storn R, Price K. 1997. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim. 11(4):341–359.
  • Termeh SVR, Kornejady A, Pourghasemi HR, Keesstra S. 2018. Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms. Sci Total Environ. 615:438–451.
  • Tian Y, Xu C, Chen J, Hong H. 2017. Spatial distribution and susceptibility analyses of pre-earthquake and coseismic landslides related to the Ms 6.5 earthquake of 2014 in Ludian, Yunan, China. Geocarto Int. 32(9):978–989.
  • Tian Y, Xu C, Hong H, Zhou Q, Wang D. 2019. Mapping earthquake-triggered landslide susceptibility by use of artificial neural network (ANN) models: an example of the 2013 Minxian (China) Mw 5.9 event. Geomat Nat Hazard Risk. 10(1):1–25.
  • Tien Bui D, Khosravi K, Li S, Shahabi H, Panahi M, Singh V, Chapi K, Shirzadi A, Panahi S, Chen W, Bin Ahmad B. 2018a. New hybrids of ANFIS with several optimization algorithms for flood susceptibility modeling. Water. 10(9):1210.
  • Tien Bui D, Pham BT, Nguyen QP, Hoang N-D. 2016. Spatial prediction of rainfall-induced shallow landslides using hybrid integration approach of least-squares support vector machines and differential evolution optimization: a case study in Central Vietnam. Int J Digital Earth. 9(11):1077–1097.
  • Tien Bui D, Shahabi H, Shirzadi A, Chapi K, Hoang N-D, Pham B, Bui Q-T, Tran C-T, Panahi M, Bin Ahmad B, et al. 2018b. A novel integrated approach of relevance vector machine optimized by imperialist competitive algorithm for spatial modeling of shallow landslides. Remote Sens. 10(10):1538.
  • Vakhshoori V, Zare M. 2016. Landslide susceptibility mapping by comparing weight of evidence, fuzzy logic, and frequency ratio methods. Geomat Nat Hazard Risk. 7(5):1731–1752.
  • Wu X, Ren F, Niu R. 2014. Landslide susceptibility assessment using object mapping units, decision tree, and support vector machine models in the Three Gorges of China. Environ Earth Sci. 71(11):4725–4738.
  • Xi W, Li G, Moayedi H, Nguyen H. 2019. A particle-based optimization of artificial neural network for earthquake-induced landslide assessment in Ludian County, China. Geomat Nat Hazard Risk. 10(1):1750–1771.
  • Xie J., et al., 2015. Analysis of landslide hazard area in Ludian earthquake based on Random Forests. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(7):p. 865.
  • Xie Z, Chen G, Meng X, Zhang Y, Qiao L, Tan L. 2017. A comparative study of landslide susceptibility mapping using weight of evidence, logistic regression and support vector machine and evaluated by SBAS-InSAR monitoring: Zhouqu to Wudu segment in Bailong River Basin. China. Environ. Earth Sci. 76(313).
  • Xu C, Dai F, Xu X, Lee YH. 2012. GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed, China. Geomorphology. 145:70–80.
  • Yan G, Liang S, Gui X, Xie Y, Zhao H. 2018. Optimizing landslide susceptibility mapping in the Kongtong District, NW China: comparing the subdivision criteria of factors. Geocarto Int.:1–19.
  • Yang J, Song C, Yang Y, Xu C, Guo F, Xie L. 2019. New method for landslide susceptibility mapping supported by spatial logistic regression and GeoDetector: a case study of Duwen Highway Basin, Sichuan Province, China. Geomorphology. 324:62–71.
  • Yao X, Tham L, Dai F. 2008. Landslide susceptibility mapping based on support vector machine: a case study on natural slopes of Hong Kong, China. Geomorphology. 101(4):572–582.
  • Yilmaz I. 2009. Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat—Turkey). Comput Geosci. 35:1125–1138.
  • Youssef AM, Pradhan B, Jebur MN, El-Harbi HM. 2015. Landslide susceptibility mapping using ensemble bivariate and multivariate statistical models in Fayfa area, Saudi Arabia. Environ Earth Sci. 73(7):3745–3761.
  • Yuan C, Moayedi H. 2019. Evaluation and comparison of the advanced metaheuristic and conventional machine learning methods for prediction of landslide occurrence. Eng Comput. 36:1–11.
  • Zare M, Pourghasemi HR, Vafakhah M, Pradhan B. 2013. Landslide susceptibility mapping at Vaz Watershed (Iran) using an artificial neural network model: a comparison between multilayer perceptron (MLP) and radial basic function (RBF) algorithms. Arab J Geosci. 6(8):2873–2888.
  • Zheng Q, Simon D, Richter H, Gao Z. 2014. Differential particle swarm evolution for robot control tuning. Proceedings of the American Control Conference (ACC); June 4–6; Portland, OR, USA: IEEE.
  • Zhou J-W, Lu P-Y, Hao M-H. 2016a. Landslides triggered by the 3 August 2014 Ludian earthquake in China: geological properties, geomorphologic characteristics and spatial distribution analysis. Geomat Nat Hazard Risk. 7(4):1219–1241.
  • Zhou S, Chen G, Fang L. 2016b. Distribution pattern of landslides triggered by the 2014 Ludian earthquake of China: implications for regional threshold topography and the seismogenic fault identification. ISPRS Int J Geo-Inf. 5(4):46.