1,960
Views
12
CrossRef citations to date
0
Altmetric
Articles

Assessment of check dams’ role in flood hazard mapping in a semi-arid environment

, , , , , & show all
Pages 2239-2256 | Received 25 Aug 2018, Accepted 06 Nov 2019, Published online: 28 Nov 2019

References

  • Abbasi NA, Xu X, Lucas-Borja ME, Dang W, Liu B. 2019. The use of check dams in watershed management projects: examples from around the world. Sci Total Environ. 676:683–691.
  • Al-Juaidi AE, Nassar AM, Al-Juaidi OE. 2018. Evaluation of flood susceptibility mapping using logistic regression and GIS conditioning factors. Arab J Geosci. 11:765.
  • Boix‐Fayos C, de Vente J, Martínez‐Mena M, Barberá GG, Castillo V. 2008. The impact of land use change and check‐dams on catchment sediment yield. Hydrol Process J. 22:4922–4935.
  • Bombino G, Gurnell A, Tamburino V, Zema D, Zimbone S. 2008. Sediment size variation in torrents with check dams: effects on riparian vegetation. Ecol Eng. 32(2):166–177.
  • Bombino G, Gurnell A, Tamburino V, Zema D, Zimbone S. 2009. Adjustments in channel form, sediment calibre and vegetation around check‐dams in the headwater reaches of mountain torrents, Calabria, Italy. Earth Surf Process Landf. 34:1011–1021.
  • Chakraborty A, Joshi P. 2016. Mapping disaster vulnerability in India using analytical hierarchy process. Geomat Nat Hazards Risk. 7(1):308–325.
  • Chapi K, Singh VP, Shirzadi A, Shahabi H, Bui DT, Pham BT, Khosravi K. 2017. A novel hybrid artificial intelligence approach for flood susceptibility assessment. Environ Model Softw. 95:229–245.
  • Costache R. 2019. Flash-flood Potential Index mapping using weights of evidence, decision Trees models and their novel hybrid integration. Stoch Environ Res Risk Assess. 33(7):1375–1402.
  • Elmahdy SI, Mostafa MM. 2013. Natural hazards susceptibility mapping in Kuala Lumpur, Malaysia: an assessment using remote sensing and geographic information system (GIS). Geomat Nat Hazards Risk. 4(1):71–91.
  • Fernández D, Lutz M. 2010. Urban flood hazard zoning in Tucumán Province, Argentina, using GIS and multicriteria decision analysis. Eng Geol. 111(1–4):90–98.
  • FitzHugh TW, Vogel RM. 2011. The impact of dams on flood flows in the United States. River Res Appl. 27(10):1192–1215.
  • Gan B-R, Liu X-N, Yang X-G, Wang X-K, Zhou J-W. 2018. The impact of human activities on the occurrence of mountain flood hazards: lessons from the 17 August 2015 flash flood/debris flow event in Xuyong County, south-western China. Geomat Nat Hazards Risk. 9(1):816–840.
  • Ge H, Huang Z, Wang Y, Li J. 2013. Application of fuzzy optimization model based on entropy weight in typical flood hydrograph selection. J Hydrol Eng. 18(11):1400–1407.
  • Gigović L, Pamučar D, Bajić Z, Drobnjak S. 2017. Application of GIS-interval rough AHP methodology for flood hazard mapping in urban areas. Water. 9(6):360.
  • Guo E, Zhang J, Ren X, Zhang Q, Sun Z. 2014. Integrated risk assessment of flood disaster based on improved set pair analysis and the variable fuzzy set theory in central Liaoning Province, China. Nat Hazards. 74(2):947–965.
  • Hazarika N, Barman D, Das A, Sarma A, Borah S. 2018. Assessing and mapping flood hazard, vulnerability and risk in the Upper Brahmaputra River valley using stakeholders’ knowledge and multicriteria evaluation (MCE). J Flood Risk Management. 11:S700–S716.
  • Ildoromi AR, Sepehri M, Malekinezhad H, Kiani-Harchegani M, Ghahramani A, Hosseini SZ, Artimani MM. 2019. Application of multi-criteria decision making and GIS for check dam Layout in the Ilanlu Basin, Northwest of Hamadan Province, Iran. Phys Chem Earth, Parts A/B/C. doi: 10.1016/j.pce.2019.10.002
  • Jeon J-J, Sung JH, Chung E-S. 2016. Abrupt change point detection of annual maximum precipitation using fused lasso. J Hydrol. 538:831–841.
  • Kalantari Z, Nickman A, Lyon SW, Olofsson B, Folkeson L. 2014. A method for mapping flood hazard along roads. J Environ Manag. 133:69–77.
  • Kawachi T, Maruyama T, Singh VP. 2001. Rainfall entropy for delineation of water resources zones in Japan. J Hydrol. 246(1–4):36–44.
  • Kazakis N, Kougias I, Patsialis T. 2015. Assessment of flood hazard areas at a regional scale using an index-based approach and Analytical Hierarchy Process: application in Rhodope–Evros region, Greece. Sci Total Environ. 538:555–563.
  • Kia MB, Pirasteh S, Pradhan B, Mahmud AR, Sulaiman WNA, Moradi A. 2012. An artificial neural network model for flood simulation using GIS: Johor River Basin, Malaysia. Environ Earth Sci. 67(1):251–264.
  • Lai C, Chen X, Chen X, Wang Z, Wu X, Zhao S. 2015. A fuzzy comprehensive evaluation model for flood risk based on the combination weight of game theory. Nat Hazards. 77(2):1243–1259.
  • Langdale GW, Shrader W. 1982. Soil erosion effects on soil productivity of cultivated cropland. Chapter 4 in Determinants of soil loss tolerance. American Society of Agronomy special publication no. 45. Madison, WI: American Society of Agronomy, Soil Science Society of America.
  • Li S, Yu P, Sun S, Wang Y-R. 2010. Entropy weight based fuzzy matter element model for evaluating and zoning of regional flood disaster vulnerability. J Nat Disaster. 19:124–131.
  • Liu J-F, Li J, Liu J, Cao R. 2008. Integrated GIS/AHP-based flood risk assessment: a case study of Huaihe River Basin in China. J Nat Disaster. 17:110–114.
  • Lotfi FH, Fallahnejad R. 2010. Imprecise Shannon’s entropy and multi attribute decision making. Entropy. 12(1):53–62.
  • Ma X, Lu X, Van Noordwijk M, Li J, Xu J. 2014. Attribution of climate change, vegetation restoration, and engineering measures to the reduction of suspended sediment in the Kejie catchment, southwest China. Hydrol Earth Syst Sci. 18(5):1979–1994.
  • Mahmoud SH, Gan TY. 2018. Multi-criteria approach to develop flood susceptibility maps in arid regions of Middle East. J Clean Prod. 196:216–229.
  • Malekinezhad H, Talebi A, Ilderomi AR, Hosseini SZ, Sepehri M. 2017. Flood hazard mapping using fractal dimension of drainage network in Hamadan City, Iran. J Environ Eng Sci. 12(4):86–92.
  • Mamedov AI, Levy GJ. 2019. Soil erosion–runoff relations on cultivated land: insights from laboratory studies. Eur J Soil Sci. 70(3):686–696.
  • Mandelbrot BB. 1982. The fractal geometry of nature. New York: WH Freeman.
  • Matheswaran K, Alahacoon N, Pandey R, Amarnath G. 2019. Flood risk assessment in South Asia to prioritize flood index insurance applications in Bihar, India. Geomatic Nat Hazard Risk. 10(1):26–48.
  • Militino AF, Ugarte MD, Pérez-Goya U. 2018. Detecting change-points in the time series of surfaces occupied by pre-defined NDVI categories in continental Spain from 1981 to 2015. In: The mathematics of the uncertain. Switzerland: Springer; p. 295–307.
  • Mizuyama T. 2008. Structural countermeasures for debris flow disasters. IJECE Eng. 1(2):38–43.
  • Morgan RP, Rickson RJ. 2003. Slope stabilization and erosion control: a bioengineering approach. New York, NY: Taylor & Francis.
  • Novelo-Casanova DA, Rodríguez-Vangort F. 2016. Flood risk assessment. Case of study: Motozintla de Mendoza, Chiapas, Mexico. Geomatic Nat Hazard Risk. 7(5):1538–1556.
  • Pimentel D, Burgess M. 2013. Soil erosion threatens food production. Agriculture. 3(3):443–463.
  • Quinteiro P, Van de Broek M, Dias AC, Ridoutt BG, Govers G, Arroja L. 2017. Life cycle impacts of topsoil erosion on aquatic biota: case study on Eucalyptus globulus forest. Int J Life Cycle Assess. 22(2):159–171.
  • Razavi T, Coulibaly P. 2013. Streamflow prediction in ungauged basins: review of regionalization methods. J Hydrol Eng. 18(8):958–975.
  • Roshani R. 2003. Evaluating the effect of check dams on flood peaks to optimise the flood control measures (Kan case study in Iran). Enschede: The Netherlands: International Institute for Geo-information Science and Earth Observation. 54 p.
  • Sepehri M, Ildoromi AR, Malekinezhad H, Hosseini SZ, Talebi A, Goodarzi S. 2017. Flood hazard mapping for the gonbad chi region, Iran. J Environ Eng Sci. 12(1):16–24.
  • Sepehri M, Malekinezhad H, Hosseini SZ, Ildoromi AR. 2019a. Suburban flood hazard mapping in Hamadan city, Iran. Proc Inst Civil Eng. doi: 10.1680/jmuen.17.00029
  • Sepehri M, Malekinezhad H, Hosseini SZ, Ildoromi AR. 2019b. Assessment of flood hazard mapping in urban areas using entropy weighting method: a case study in Hamadan city, Iran. Acta Geophys. 67(5):1435–1449.
  • Sepehri M, Malekinezhad H, Ilderomi AR, Talebi A, Hosseini SZ. 2018. Studying the effect of rain water harvesting from roof surfaces on runoff and household consumption reduction. Sustain Cities Soc. 43:317–324.
  • Shieh C-L, Guh Y-R, Wang S-Q. 2007. The application of range of variability approach to the assessment of a check dam on riverine habitat alteration. Environ Geol. 52(3):427–435.
  • Siahkamari S, Haghizadeh A, Zeinivand H, Tahmasebipour N, Rahmati O. 2018. Spatial prediction of flood-susceptible areas using frequency ratio and maximum entropy models. Geocarto Int. 33(9):927–941.
  • Singh V. 1997. The use of entropy in hydrology and water resources. Hydrol Process. 11(6):587–626.
  • Sivapalan M. 2003. Prediction in ungauged basins: a grand challenge for theoretical hydrology. Hydrol Process. 17(15):3163–3170.
  • Skilodimou HD, Bathrellos GD, Chousianitis K, Youssef AM, Pradhan B. 2019. Multi-hazard assessment modeling via multi-criteria analysis and GIS: a case study. Environ Earth Sci. 78(2):47.
  • Smithson M. 1989. Cognitive science. In: Ignorance and uncertainty: emerging paradigms. New York, NY: Springer-Verlag Publishing. http://dx.doi.org/10.1007/978-1-4612-3628-3.
  • Smith K, Ward R. 1998. Mitigating and Managing Flood Losses. Floods: Physical Processes and Human Impacts. Chichester: John Wiley & Sons.
  • Stefanidis S, Stathis D. 2013. Assessment of flood hazard based on natural and anthropogenic factors using analytic hierarchy process (AHP). Nat Hazards. 68(2):569–585.
  • Tehrany MS, Jones S, Shabani F. 2019. Identifying the essential flood conditioning factors for flood prone area mapping using machine learning techniques. Catena. 175:174–192.
  • Wagener T, Wheater H, Gupta HV. 2004. Rainfall-runoff modelling in gauged and ungauged catchments. Singapore: World Scientific.
  • Wang G, Liu J, Kubota J, Chen L. 2007. Effects of land‐use changes on hydrological processes in the middle basin of the Heihe River, northwest China. Hydrol Process. 21(10):1370–1382.
  • Wang Z, Lai C, Chen X, Yang B, Zhao S, Bai X. 2015. Flood hazard risk assessment model based on random forest. J. Hydrol. 527:1130–1141.
  • Wu C, Wang Y, Tang Y, Huang Q, Jin J. 2012. Variable fuzzy recognition model for the flood hazard assessment based on Set Pair Analysis. J Northwest A F Univ. 40:221–226.
  • Wu M, Ge W, Li Z, Wu Z, Zhang H, Li J, Pan Y. 2019. Improved set pair analysis and its application to environmental impact evaluation of dam break. Water. 11(4):821.
  • Xie P, Gu H, Sang Y-F, Wu Z, Singh VP. 2019. Comparison of different methods for detecting change points in hydroclimatic time series. J Hydrol. 577:123973.
  • Yazdi J, Moghaddam MS, Saghafian B. 2018. Optimal design of check dams in mountainous watersheds for flood mitigation. Water Res Manage. 32(14):4793–4811.
  • Yin H, Li C. 2001. Human impact on floods and flood disasters on the Yangtze River. Geomorphology. 41(2–3):105–109.
  • Zadeh LA, Klir GJ, Yuan B. 1996. Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers. Singapore: World Scientific.
  • Zaharia L, Costache R, Prăvălie R, Ioana-Toroimac G. 2017. Mapping flood and flooding potential indices: a methodological approach to identifying areas susceptible to flood and flooding risk. Case study: the Prahova catchment (Romania). Front Earth Sci. 11(2):229–247.
  • Zema DA, Bombino G, Denisi P, Lucas-Borja ME, Zimbone SM. 2018. Evaluating the effects of check dams on channel geometry, bed sediment size and riparian vegetation in Mediterranean mountain torrents. Sci Total Environ. 642:327–340.
  • Zeng R, Chen H-K, Li J-Y. 2010. Fuzzy comprehensive evaluation method based on entropy in road flood risk assessment. Chongqing Jiotong Daxue Xuebao (Ziran Kexue Ban). 29:587–591.
  • Zhou Q, Leng G, Huang M. 2018. Impacts of future climate change on urban flood volumes in Hohhot in northern China: benefits of climate change mitigation and adaptations. Hydr and Ear Syst Scie. 22:305–316.