1,180
Views
15
CrossRef citations to date
0
Altmetric
Articles

Two novel neural-evolutionary predictive techniques of dragonfly algorithm (DA) and biogeography-based optimization (BBO) for landslide susceptibility analysis

, , , , & ORCID Icon
Pages 2429-2453 | Received 01 Jul 2019, Accepted 12 Oct 2019, Published online: 09 Dec 2019

References

  • Akgun A, Sezer EA, Nefeslioglu HA, Gokceoglu C, Pradhan B. 2012. An easy-to-use MATLAB program (MamLand) for the assessment of landslide susceptibility using a Mamdani fuzzy algorithm. Comput Geosci. 38:23–34.
  • Aksoy HS, Gor M. 2017. High-speed railway embankments stabilization by using a plant based biopolymer. Fresenius Environ Bull. 25:7626–7633.
  • Aksoy HS, Gör M, İnal E. 2016. A new design chart for estimating friction angle between soil and pile materials. Geomech Eng. 10(3):315–324.
  • Aleotti P, Chowdhury R. 1999. Landslide hazard assessment: summary review and new perspectives. Bull Eng Geol Env. 58(1):21–44.
  • ASCE Task Committee. 2000. Artificial neural networks in hydrology. II: hydrologic applications. J Hydrol Eng. 5:124–137.
  • Ayalew L, Yamagishi H, Ugawa N. 2004. Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan. Landslides. 1(1):73–81.
  • Azeez OS, Pradhan B, Shafri HZ, Shukla N, Lee C-W, Rizeei HM. 2019. Modeling of CO emissions from traffic vehicles using artificial neural networks. Appl Sci. 9(2):313.
  • Beguería S. 2006. Validation and evaluation of predictive models in hazard assessment and risk management. Nat Hazards. 37(3):315–329.
  • Bhattacharya A, Chattopadhyay PK. 2010. Solving complex economic load dispatch problems using biogeography-based optimization. Exp Syst Appl. 37(5):3605–3615.
  • Bui DT, Moayedi H, Gör M, Jaafari A, Foong LK. 2019. Predicting slope stability failure through machine learning paradigms. ISPRS Int J Geo-Inf. 8(9):395.
  • Bui DT, Tuan TA, Hoang N-D, Thanh NQ, Nguyen DB, Van Liem N, Pradhan B. 2017. Spatial prediction of rainfall-induced landslides for the Lao Cai area (Vietnam) using a hybrid intelligent approach of least squares support vector machines inference model and artificial bee colony optimization. Landslides. 14:447–458.
  • Can A, Dagdelenler G, Ercanoglu M, Sonmez H. 2019. Landslide susceptibility mapping at Ovacık-Karabük (Turkey) using different artificial neural network models: comparison of training algorithms. Bull Eng Geol Environ. 78(1):89–102.
  • Chen W, Chai H, Sun X, Wang Q, Ding X, Hong H. 2016. A GIS-based comparative study of frequency ratio, statistical index and weights-of-evidence models in landslide susceptibility mapping. Arab J Geosci. 9(3):204.
  • Chen W, Panahi M, Pourghasemi HR. 2017. Performance evaluation of GIS-based new ensemble data mining techniques of adaptive neuro-fuzzy inference system (ANFIS) with genetic algorithm (GA), differential evolution (DE), and particle swarm optimization (PSO) for landslide spatial modelling. Catena. 157:310–324.
  • Cruden DM. 1991. A simple definition of a landslide. Bull Eng Geol Environ. 43:27–29.
  • Cybenko G. 1989. Approximation by superpositions of a sigmoidal function. Math Control Signal Syst. 2(4):303–314.
  • Egan JP. 1975. Signal detection theory and ROC analysis. New York (NY): Academic Press.
  • Gao W, Dimitrov D, Abdo H. 2018. Tight independent set neighborhood union condition for fractional critical deleted graphs and ID deleted graphs. Discrete Contin Dyn Syst-S. 12:711–721.
  • Gao W, Guirao JLG, Abdel-Aty M, Xi W. 2019. An independent set degree condition for fractional critical deleted graphs. Discrete Contin Dyn Syst-S. 12:877–886.
  • Gao W, Guirao JLG, Basavanagoud B, Wu J. 2018. Partial multi-dividing ontology learning algorithm. Inf Sci. 467:35–58.
  • Gao W, Wang W, Dimitrov D, Wang Y. 2018. Nano properties analysis via fourth multiplicative ABC indicator calculating. Arab J Chem. 11(6):793–801.
  • Gao W, Wu H, Siddiqui MK, Baig AQ. 2018. Study of biological networks using graph theory. Saudi J Biol Sci. 25(6):1212–1219.
  • Hadidi A. 2015. A robust approach for optimal design of plate fin heat exchangers using biogeography based optimization (BBO) algorithm. Appl Energy. 150:196–210.
  • Hong H, Miao Y, Liu J, Zhu AX. 2019. Exploring the effects of the design and quantity of absence data on the performance of random forest-based landslide susceptibility mapping. Catena. 176:45–64.
  • Hornik K, Stinchcombe M, White H. 1989. Multilayer feedforward networks are universal approximators. Neural Netw. 2(5):359–366.
  • Irigaray C, Fernández T, El Hamdouni R, Chacón J. 2007. Evaluation and validation of landslide-susceptibility maps obtained by a GIS matrix method: examples from the Betic Cordillera (southern Spain). Nat Hazards. 41(1):61–79.
  • Jaafari A, Najafi A, Pourghasemi H, Rezaeian J, Sattarian A. 2014. GIS-based frequency ratio and index of entropy models for landslide susceptibility assessment in the Caspian forest, northern Iran. Int J Environ Sci Technol. 11(4):909–926.
  • Jaafari A, Panahi M, Pham BT, Shahabi H, Bui DT, Rezaie F, Lee S. 2019. Meta optimization of an adaptive neuro-fuzzy inference system with grey wolf optimizer and biogeography-based optimization algorithms for spatial prediction of landslide susceptibility. Catena. 175:430–445.
  • Jenks GF. 1967. The data model concept in statistical mapping. Int Yearb Cartogr. 7:186–190.
  • Kawabata D, Bandibas J. 2009. Landslide susceptibility mapping using geological data, a DEM from ASTER images and an artificial neural network (ANN). Geomorphology. 113(1–2):97–109.
  • Kumar R, Anbalagan R. 2016. Landslide susceptibility mapping using analytical hierarchy process (AHP) in Tehri reservoir rim region, Uttarakhand. J Geol Soc India. 87(3):271–286.
  • Lasko TA, Bhagwat JG, Zou KH, Ohno-Machado L. 2005. The use of receiver operating characteristic curves in biomedical informatics. J Biomed Inform. 38(5):404–415.
  • Lee S, Ryu J-H, Won J-S, Park H-J. 2004. Determination and application of the weights for landslide susceptibility mapping using an artificial neural network. Eng Geol. 71(3–4):289–302.
  • Liu J, Duan Z. 2018. Quantitative assessment of landslide susceptibility comparing statistical index, index of entropy, and weights of evidence in the Shangnan area, China. Entropy. 20(11):868.
  • McCulloch WS, Pitts W. 1943. A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys. 5(4):115–133.
  • Mezaal M, Pradhan B, Rizeei H. 2018. Improving landslide detection from airborne laser scanning data using optimized Dempster–Shafer. Remote Sens. 10(7):1029.
  • Mirjalili S. 2016. Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl. 27(4):1053–1073.
  • Mirjalili S, Mirjalili SM, Lewis A. 2014. Let a biogeography-based optimizer train your multi-layer perceptron. Inf Sci. 269:188–209.
  • Moayedi H, Bui DT, Gör M, Pradhan B, Jaafari A. 2019. The feasibility of three prediction techniques of the artificial neural network, adaptive neuro-fuzzy inference system, and hybrid particle swarm optimization for assessing the safety factor of cohesive slopes. ISPRS Int J Geo-Inf. 8(9):891.
  • Moayedi H, Hayati S. 2018a. Applicability of a CPT-based neural network solution in predicting load-settlement responses of bored pile. Int J Geomech. 18(6):06018009.
  • Moayedi H, Hayati S. 2018b. Modelling and optimization of ultimate bearing capacity of strip footing near a slope by soft computing methods. Appl Soft Comput. 66:208–219.
  • Moayedi H, Mehrabi M, Kalantar B, Abdullahi Mu’azu M, A. Rashid AS, Foong LK, Nguyen H. 2019. Novel hybrids of adaptive neuro-fuzzy inference system (ANFIS) with several metaheuristic algorithms for spatial susceptibility assessment of seismic-induced landslide. Geomat Nat Hazards Risk. 10(1):1879–1911.
  • Moayedi H, Mehrabi M, Mosallanezhad M, Rashid ASA, Pradhan B. 2018. Modification of landslide susceptibility mapping using optimized PSO-ANN technique. Eng Comput. 35:1–18.
  • Moayedi H, Rezaei A. 2017. An artificial neural network approach for under-reamed piles subjected to uplift forces in dry sand. Neural Comput Appl. 31(2):327–336.
  • Mojaddadi H, Pradhan B, Nampak H, Ahmad N, Ghazali A. 2017. Ensemble machine-learning-based geospatial approach for flood risk assessment using multi-sensor remote-sensing data and GIS. Geomat Nat Hazards Risk. 8(2):1080–1102.
  • Mojaddadi Rizeei H, Pradhan B, Saharkhiz MA. 2019. Urban object extraction using Dempster Shafer feature-based image analysis from worldview-3 satellite imagery. Int J Remote Sens. 40(3):1092–1119.
  • Myronidis D, Papageorgiou C, Theophanous S. 2016. Landslide susceptibility mapping based on landslide history and analytic hierarchy process (AHP). Nat Hazards. 81(1):245–263.
  • Nguyen H, Bui X-N, Moayedi H. 2019. A comparison of advanced computational models and experimental techniques in predicting blast-induced ground vibration in open-pit coal mine. Acta Geophys. 28:1–13.
  • Nguyen H, Mehrabi M, Kalantar B, Moayedi H, Abdullahi MM. 2019. Potential of hybrid evolutionary approaches for assessment of geo-hazard landslide susceptibility mapping. Geomat Nat Hazards Risk. 10(1):1667–1693.
  • Nicu IC. 2018. Application of analytic hierarchy process, frequency ratio, and statistical index to landslide susceptibility: an approach to endangered cultural heritage. Environ Earth Sci. 77(3):79.
  • Oh H-J, Kim Y-S, Choi J-K, Park E, Lee S. 2011. GIS mapping of regional probabilistic groundwater potential in the area of Pohang City, Korea. Journal of Hydrology. 399(3-4):158–172. doi:10.1016/j.jhydrol.2010.12.027.
  • Oh H-J, Kim Y-S, Choi J-K, Park E, Lee S. 2011. GIS mapping of regional probabilistic groundwater potential in the area of Pohang City, Korea. J Hydrol. 399(3–4):158–172.
  • Oh H-J, Pradhan B. 2011. Application of a neuro-fuzzy model to landslide-susceptibility mapping for shallow landslides in a tropical hilly area. Comput Geosci. 37:1264–1276.
  • Pourghasemi HR, Jirandeh AG, Pradhan B, Xu C, Gokceoglu C. 2013. Landslide susceptibility mapping using support vector machine and GIS at the Golestan Province, Iran. J Earth Syst Sci. 122(2):349–369.
  • Pourghasemi HR, Mohammady M, Pradhan B. 2012. Landslide susceptibility mapping using index of entropy and conditional probability models in GIS: Safarood Basin, Iran. Catena. 97:71–84.
  • Pourghasemi HR, Pradhan B, Gokceoglu C, Moezzi KD. 2013. A comparative assessment of prediction capabilities of Dempster–Shafer and weights-of-evidence models in landslide susceptibility mapping using GIS. Geomat Nat Hazards Risk. 4(2):93–118.
  • Pradhan B. 2013. A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Comput Geosci. 51:350–365.
  • Pradhan B, Lee S. 2010. Regional landslide susceptibility analysis using back-propagation neural network model at Cameron Highland, Malaysia. Landslides. 7(1):13–30.
  • Pradhan B, Lee S, Buchroithner MF. 2010. A GIS-based back-propagation neural network model and its cross-application and validation for landslide susceptibility analyses. Comp Environ Urban Syst. 34(3):216–235.
  • Rahmati O, Samani AN, Mahdavi M, Pourghasemi HR, Zeinivand H. 2015. Groundwater potential mapping at Kurdistan region of Iran using analytic hierarchy process and GIS. Arab J Geosci. 8(9):7059–7071.
  • Razavizadeh S, Solaimani K, Massironi M, Kavian A. 2017. Mapping landslide susceptibility with frequency ratio, statistical index, and weights of evidence models: a case study in northern Iran. Environ Earth Sci. 76(14):499.
  • Rizeei HM, Azeez OS, Pradhan B, Khamees HH. 2018. Assessment of groundwater nitrate contamination hazard in a semi-arid region by using integrated parametric IPNOA and data-driven logistic regression models. Environ Monit Assess. 190(11):633.
  • Rizeei HM, Pradhan B. 2019. Urban mapping accuracy enhancement in high-rise built-up areas deployed by 3D-orthorectification correction from WorldView-3 and LiDAR Imageries. Remote Sens. 11(6):692.
  • Roy PK, Ghoshal SP, Thakur SS. 2010. Biogeography based optimization for multi-constraint optimal power flow with emission and non-smooth cost function. Exp Syst Appl. 37(12):8221–8228.
  • Russell RW, May ML, Soltesz KL, Fitzpatrick JW. 1998. Massive swarm migrations of dragonflies (Odonata) in eastern North America. Am Midl Nat. 140(2):325–343.2.0.CO;2]
  • Shirzadi A, Bui DT, Pham BT, Solaimani K, Chapi K, Kavian A, Shahabi H, Revhaug I. 2017. Shallow landslide susceptibility assessment using a novel hybrid intelligence approach. Environ Earth Sci. 76(2):60.
  • Shirzadi A, Shahabi H, Chapi K, Bui DT, Pham BT, Shahedi K, Ahmad BB. 2017. A comparative study between popular statistical and machine learning methods for simulating volume of landslides. Catena. 157:213–226.
  • Shoaei Z, Ghayoumian J. 1998. The largest debris flow in the world, Seimareh Landslide, Western Iran. In: Environmental forest science. Springer; p. 553–561, Dordrecht.
  • Simon D. 2008. Biogeography-based optimization. IEEE Trans Evol Comput. 12(6):702–713.
  • Swets JA. 1988. Measuring the accuracy of diagnostic systems. Science. 240(4857):1285–1293.
  • Tehrany MS, Jones S, Shabani F, Martínez-Álvarez F, Bui DT. 2019. A novel ensemble modeling approach for the spatial prediction of tropical forest fire susceptibility using logitboost machine learning classifier and multi-source geospatial data. Theor Appl Climatol. 137(1–2):637–653.
  • Termeh SVR, Kornejady A, Pourghasemi HR, Keesstra S. 2018. Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms. Sci Total Environ. 615:438–451.
  • Tian Y, Xu C, Hong H, Zhou Q, Wang D. 2019. Mapping earthquake-triggered landslide susceptibility by use of artificial neural network (ANN) models: an example of the 2013 Minxian (China) Mw 5.9 event. Geomat Nat Hazards Risk. 10(1):1–25.
  • Tien Bui D, Shahabi H, Shirzadi A, Chapi K, Hoang N-D, Pham B, Bui Q-T, Tran C-T, Panahi M, Bin Ahmad B, et al. 2018. A novel integrated approach of relevance vector machine optimized by imperialist competitive algorithm for spatial modeling of shallow landslides. Remote Sens. 10(10):1538.
  • Tsangaratos P, Ilia I. 2016. Landslide susceptibility mapping using a modified decision tree classifier in the Xanthi Perfection, Greece. Landslides. 13(2):305–320.
  • Vakhshoori V, Pourghasemi HR. 2018. A novel hybrid bivariate statistical method entitled FROC for landslide susceptibility assessment. Environ Earth Sci. 77(19):686.
  • Varnes DJ. 1978. Slope movement types and processes. In: Schuster RL, Krizek RJ, editors. Special Report 176: landslides: analysis and control. Washington, DC: Transportation and Road Research Board, National Academy of Sciences; p. 11–33.
  • Varnes DJ, Radbruch-Hall DH. 1976. Landslides cause and effect. Bull Int Assoc Eng Geol. 13:205–216.
  • Wikelski M, Moskowitz D, Adelman JS, Cochran J, Wilcove DS, May ML. 2006. Simple rules guide dragonfly migration. Biol Lett. 2(3):325–329.
  • Xi W, Li G, Moayedi H, Nguyen H. 2019. A particle-based optimization of artificial neural network for earthquake-induced landslide assessment in Ludian county, China. Geomat Nat Hazards Risk. 10(1):1750–1771.
  • Xu C, Dai F, Xu X, Lee YH. 2012. GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed, China. Geomorphology. 145:70–80.
  • Yasen M, Al-Madi N, Obeid N. 2018. Optimizing neural networks using dragonfly algorithm for medical prediction. Proceedings of the IEEE 2018 8th International Conference on Computer Science and Information Technology (CSIT); Jul 11–12; Amman, Jordan.
  • Yilmaz I. 2009. Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat–Turkey). Comput Geosci. 35:1125–1138.
  • Youssef AM, Al-Kathery M, Pradhan B. 2015. Landslide susceptibility mapping at Al-Hasher area, Jizan (Saudi Arabia) using GIS-based frequency ratio and index of entropy models. Geosci J. 19(1):113–134.