4,951
Views
23
CrossRef citations to date
0
Altmetric
Articles

Sea level prediction using ARIMA, SVR and LSTM neural network: assessing the impact of ensemble Ocean-Atmospheric processes on models’ accuracy

ORCID Icon & ORCID Icon
Pages 653-674 | Received 19 Aug 2020, Accepted 04 Feb 2021, Published online: 02 Mar 2021

References

  • Ablain M, Legeais JF, Prandi P, Marcos M, Fenoglio-Marc L, Dieng HB, … Cazenave A. 2017. Satellite Altimetry-Based Sea Level at Global and Regional Scales. In A. Cazenave, N. Champollion, F. Paul, & J. Benveniste (Eds.), Integrative study of the mean sea level and its components; p. 9–33. Cham: Springer International Publishing.
  • Ahmed NK, Atiya AF, Gayar NE, El-Shishiny H. 2010. An empirical comparison of machine learning models for time series forecasting. Econometric Reviews. 29(5-6):594–621.
  • Barbosa SM, Fernandes MJ, Silva ME. 2004. Nonlinear sea level trends from European tide gauge records. Ann Geophys. 22(5):1465–1472.
  • Box GE, Jenkins GM, Reinsel GC, Ljung GM. 2015. Time series analysis: forecasting and control. John Wiley & Sons. Hoboken, New Jersey, (USA).
  • Cazenave A, Llovel W. 2010. Contemporary sea level rise. Ann Rev Mar Sci. 2(1):145–173.
  • Cazenave A, Palanisamy H, Ablain M. 2018. Contemporary sea level changes from satellite altimetry: What have we learned? What are the new challenges? Adv Space Res. 62(7):1639–1653.
  • Church JA, White NJ. 2011. Sea-level rise from the late 19th to the early 21st century. Surv Geophys. 32(4-5):585–602.
  • Cipollini P, Calafat FM, Jevrejeva S, Melet A, Prandi P. 2017. Monitoring sea level in the coastal zone with satellite altimetry and tide gauges. Surv Geophys. 38(1):33–57.
  • Din AHM, Hamid AIA, Yazid NM, Tugi A, Khalid NF, Omar KM, Ahmad AJJT. 2017. Malaysian sea water level pattern derived from 19 years tidal data. Journal Teknologi. 79(5):137-145
  • Din AHM, Zulkifli NA, Hamden MH, Aris WAW. 2019. Sea level trend over Malaysian seas from multi-mission satellite altimetry and vertical land motion corrected tidal data. Adv Space Res. 63(11):3452–3472.
  • Ehsan MRM, Din AHM, Hamid AA, Adzmi NHM. 2019. Interpretation of sea level variability over Malaysian seas using multi-mission satellite altimetry data. ASM Sci J. 12(Special Issue 2):90–99.
  • Eun-Joo L, Jeong-Yeob C, Jae-Hun P. 2020. Reconstruction of sea level data around the Korean Coast using artificial neural network methods. J Coastal Res. 95(sp1):1172–1176.
  • Foo WY, Teh HM, Babatunde A-L. 2020. Morphodynamics of the TELUK NIPAH shorelines. Platform: J Eng. 4(1): 29–40
  • Fu Y, Zhou X, Sun W, Tang Q. 2019. Hybrid model combining empirical mode decomposition, singular spectrum analysis, and least squares for satellite-derived sea-level anomaly prediction. Int J Remote Sens. 40(20):7817–7829.
  • Fu Y, Zhou X, Zhou D, Li J, Zhang W. 2019. Estimation of sea level variability in the South China Sea from satellite altimetry and tide gauge data. Adv Space Res.DOI: https://doi.org/10.1016/j.asr.2019.07.001
  • Ghazali NHM, Awang NA, Mahmud M, Mokhtar A. 2018. Impact of sea level rise and tsunami on coastal areas of North-West Peninsular Malaysia. Irrig and Drain. 67:119–129.
  • Global Change Research Program. 2019. Climate science special report. https://science2017.globalchange.gov/.
  • Hamid AIA, Din AHM, Hwang C, Khalid NF, Tugi A, Omar KM. 2018. Contemporary sea level rise rates around Malaysia: altimeter data optimization for assessing coastal impact. J Asian Earth Sci. 166:247–259.
  • Hao Z, Deng M, Zhu Q, Tao B, Chen J, Pan D. 2019. Sea level prediction based on the long time series satellite observations (Vol. 11155). SPIE. Bellingham, Washington, (USA).
  • Holgate SJ, Matthews A, Woodworth PL, Rickards LJ, Tamisiea ME, Bradshaw E, … Pugh J. J J o C R. 2012. New data systems and products at the permanent service for mean sea level. Journal of Coast Rese. 29(3):493–504.
  • Holland PW, Welsch RE. 1977. Robust regression using iteratively reweighted least-squares. Commun Stat - Theory Methods. 6(9):813–827.
  • Horton BP, Kopp RE, Garner AJ, Hay CC, Khan NS, Roy K. 2018. Mapping sea-level change in time, space, and probability. Annu Rev Environ Resour. 43:481–521.
  • Hyndman RJ, Koehler AB. 2006. Another look at measures of forecast accuracy. Int J Forecast. 22(4):679–688.
  • Imani M, You R-J, Kuo C-Y. 2014a. Analysis and prediction of Caspian Sea level pattern anomalies observed by satellite altimetry using autoregressive integrated moving average models. Arab J Geosci. 7(8):3339–3348.
  • Imani M, You RJ, Kuo CY. 2014b. Caspian Sea level prediction using satellite altimetry by artificial neural networks. Int J Environ Sci Technol. 11(4):1035–1042.
  • IPCC 2013. Sea Level Change. In: Climate Change 2013: The physical science basis. Contribution of Working Group I to the fifth assessment report of the intergovernmental panel on climate change [Church, J.A., P.U. Clark, A. Cazenave, J.M. Gregory, S. Jevrejeva, A. Levermann, M.A. Merrifield, G.A. Milne, R.S. Nerem, P.D. Nunn, A.J. Payne, W.T. Pfeffer, D. Stammer and A.S. Unnikrishnan]. Retrieved from https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter13_FINAL.pdf
  • Ishida K, Tsujimoto G, Ercan A, Tu T, Kiyama M, Amagasaki M. 2020. Hourly-scale coastal sea level modeling in a changing climate using long short-term memory neural network. Sci Total Environ. 720:137613.
  • Jevrejeva S, Jackson LP, Riva REM, Grinsted A, Moore JC. 2016. Coastal sea level rise with warming above 2 °C. Proc Natl Acad Sci USA. 113(47):13342–13347.
  • Jevrejeva S, Moore JC, Grinsted A, Matthews AP, Spada G. 2014. Trends and acceleration in global and regional sea levels since 1807. Global Planet Change. 113:11–22.
  • Kamaruddin AH, Din AHM, Pa'Suya MF, Omar KM. 2017. Long-term sea level trend from tidal data in Malaysia. Paper Presented at the 2016 7th IEEE Control and System Graduate Research Colloquium, ICSGRC 2016 - Proceeding.
  • Kamaruddin AH, Din AHM, Pa'suya MF, Omar KM. (2016). Long-term sea level trend from tidal data in Malaysia. Paper presented at the 2016 7th IEEE Control and System Graduate Research Colloquium (ICSGRC).
  • Khairuddin MA, Din AHM, Omar AH. 2019. Sea level impact due to el nino and la nina phenomena from multi-mission satellite altimetry data over Malaysian seas. In Lecture notes in civil engineering. 9:771–792.
  • Krell MMJAPA. 2018. Generalizing, decoding, and optimizing support vector machine classification. ArXiv preprint arXiv:1801.04929.
  • Lai V, Ahmed NA, Malek MA, Abdulmohsin Afan H, Ibrahim KR, El-Shafie A, El-Shafie A. 2019. Modeling the nonlinearity of sea level oscillations in the Malaysian coastal areas using machine learning algorithms. Sustainability. 11(17):4643.
  • Lai V, Malek M, Abdullah S, Latif S, Ahmed A. 2020. Time-series prediction of sea level change in the East Coast of Peninsular Malaysia from the supervised learning approach. IJDNE. 15(3):409–415.
  • Makridakis S, Spiliotis E, Assimakopoulos V. 2018. Statistical and machine learning forecasting methods: concerns and ways forward. PLoS One. 13(3):e0194889
  • Muslim TO, Ahmed AN, Malek MA, Abdulmohsin Afan H, Khaleel Ibrahim R, El-Shafie A, Sapitang M, Sherif M, Sefelnasr A, El-Shafie A. 2020. Investigating the influence of meteorological parameters on the accuracy of sea-level prediction models in Sabah, Malaysia. Sustainability (Switzerland), 12(3):1193.
  • Nicholls RJ, Cazenave A. J s. 2010. Sea-level rise and its impact on coastal zones. Science. 328(5985):1517–1520.
  • Nidhinarangkoon P, Ritphring S, Udo K. 2020. Impact of sea level rise on tourism carrying capacity in Thailand. JMSE. 8(2):104.
  • Ponte RM, Carson M, Cirano M, Domingues CM, Jevrejeva S, Marcos M, … Zhang X. 2019. Towards comprehensive observing and modeling systems for monitoring and predicting regional to coastal sea level. Rev Art.6(437).doi: https://doi.org/10.3389/fmars.2019.00437
  • Pycroft J, Abrell J, Ciscar JC. 2016. The global impacts of extreme sea-level rise: a comprehensive economic assessment. Environ Resource Econ. 64(2):225–253.
  • Rahmstorf S. 2012. Modeling sea level rise. Nat Educ Knowl. 3(10): 4.
  • Ranjbar A, Cherubini C, Saber A. 2020. Investigation of transient sea level rise impacts on water quality of unconfined shallow coastal aquifers. Int J Environ Sci Technol. 17(5):2607–2622.
  • Sarkar MSK, Begum RA, Pereira JJ, Jaafar AH, Saari MY. 2014. Impacts of and adaptations to sea level rise in Malaysia. Asian J Water Environ Pollut. 11(2):29–36.
  • Schaefer N, Mayer-Pinto M, Griffin KJ, Johnston EL, Glamore W, Dafforn KA. 2020. Predicting the impact of sea-level rise on intertidal rocky shores with remote sensing. J Environ Manage. 261:110203.
  • Shi W, Lu C, Werner AD. 2020. Assessment of the impact of sea-level rise on seawater intrusion in sloping confined coastal aquifers. J Hydrol. 586:124872.
  • Sithara S, Pramada SK, Thampi SG. 2020. Sea level prediction using climatic variables: a comparative study of SVM and hybrid wavelet SVM approaches. Acta Geophys. 68(6):1779–1790.
  • Srivastava PK, Islam T, Singh SK, Petropoulos GP, Gupta M, Dai Q. 2016. Forecasting Arabian Sea level rise using exponential smoothing state space models and ARIMA from TOPEX and Jason satellite radar altimeter data. Met Apps. 23(4):633–639.
  • Stammer D, Cazenave A, Ponte RM, Tamisiea ME. 2013. Causes for contemporary regional sea level changes. Ann Rev Mar Sci. 5:21–46.
  • Sturges W, Douglas BC. 2011. Wind effects on estimates of sea level rise. J Geophys Res. 116(C6).doi: https://doi.org/10.1029/2010JC006492
  • Werner AD, Simmons CTJG. 2009. Impact of sea-level rise on sea water intrusion in coastal aquifers. Ground Water. 47(2):197–204.
  • Yi S, Heki K, Qian A. 2017. Acceleration in the Global Mean Sea Level Rise: 2005–2015. Geophys Res Lett. 44(23):11,905–911,913.
  • Zhao J, Fan Y, Mu Y. 2019. Sea level prediction in the yellow sea from satellite altimetry with a combined least squares-neural network approach. Mar Geod. 42(4):344–366.
  • Zubier KM, Eyouni LS. 2020. Investigating the role of atmospheric variables on sea level variations in the Eastern Central Red Sea using an artificial neural network approach. Oceanologia. 62(3):267–290.