1,403
Views
4
CrossRef citations to date
0
Altmetric
Articles

Gene expression programming and ensemble methods for bushfire susceptibility mapping: a case study of Victoria, Australia

ORCID Icon &
Pages 2367-2386 | Received 26 Apr 2021, Accepted 30 Jul 2021, Published online: 16 Aug 2021

References

  • BOM. 2021. Australia’s Official Weather Forecasts and Weather Radar - Bureau of Meteorology. [accessed 2020 Dec 01]. http://www.bom.gov.au/.
  • Bui QT. 2019. Metaheuristic algorithms in optimizing neural network: a comparative study for forest fire susceptibility mapping in Dak Nong, Vietnam. Geomat Nat Hazards Risk. 10 (1):136–150.
  • Bunch A. 2020. Australia bushfire latest: state-by-state breakdown of all areas affected by blazes. [accessed 2021 Jan 01]. https://7news.com.au/news/bushfires/australia-bushfire-latest-state-by-state-breakdown-of-all-areas-affected-by-blazes-c-630858.
  • Catry FX, Rego FC, Bação FL, Moreira F. 2009. Modeling and mapping wildfire ignition risk in Portugal. Int J Wildland Fire. 18(8):921–931.
  • Chen K, Jacobson C, Blong R. 2001. Using NDVI image texture analysis for bushfire-prone landscape assessment. Asian Conf Remote Sens. 22(9):1–9.
  • Cheney NP. 1976. Bushfire disasters in Australia, 1945-1975. Aust For. 39(4):245–268.
  • Clarke H, Gibson R, Cirulis B, Bradstock RA, Penman TD. 2019. Developing and testing models of the drivers of anthropogenic and lightning-caused wildfire ignitions in south-eastern Australia. J Environ Manage. 235:34–41.
  • Collins L, Bradstock RA, Penman TD. 2014. Can precipitation influence landscape controls on wildfire severity’ A case study within temperate eucalypt forests of south-eastern Australia. Int J Wildland Fire. 23(1):9–20.
  • Crimmins MA, Comrie AC. 2004. Interactions between antecedent climate and wildfire variability across south-eastern Arizona. Int J Wildland Fire. 13(4):455–466.
  • De Vasconcelos MJP, Silva S, Tome M, Alvim M, Pereira JMC. 2001. Spatial prediction of fire ignition probabilities: comparing logistic regression and neural networks. Photogramm Eng Remote Sensing. 67(1):73–81.
  • Dorji S, Ongsomwang S. 2017. Wildfire susceptibility mapping in Bhutan using geoinformatics technology. Suranaree J Sci Technol. 24(2):213–237.
  • Emamgolizadeh S, Bateni SM, Shahsavani D, Ashrafi T, Ghorbani H. 2015. Estimation of soil cation exchange capacity using Genetic Expression Programming (GEP) and Multivariate Adaptive Regression Splines (MARS). J Hydrol. 529:1590–1600. https://doi.org/http://dx.doi.org/10.1016/j.jhydrol.2015.08.025.
  • Eskandari S, Amiri M, Sãdhasivam N, Pourghasemi HR. 2020a. Comparison of new individual and hybrid machine learning algorithms for modeling and mapping fire hazard: a supplementary analysis of fire hazard in different counties of Golestan Province in Iran. Nat Hazards. 104(1):305–327.
  • Eskandari S, Miesel JR, Pourghasemi HR. 2020b. The temporal and spatial relationships between climatic parameters and fire occurrence in northeastern Iran. Ecol Indic. 118:106720.
  • Ferreira C. 2001. Gene expression programming: a new adaptive algorithm for solving problems. [accessed 2021 Mar 8]. https://arxiv.org/abs/cs/0102027
  • Ferreira C. 2013. Gepsoft GeneXproTools - Data modeling & analysis software. [accessed 2021 Mar 8]. https://www.gepsoft.com/.
  • Gandomi AH, Tabatabaei SM, Moradian MH, Radfar A, Alavi AH. 2011. A new prediction model for the load capacity of castellated steel beams. J Constr Steel Res. 67(7):1096–1105. https://doi.org/http://dx.doi.org/10.1016/j.jcsr.2011.01.014.
  • Gholamnia K, Gudiyangada Nachappa T, Ghorbanzadeh O, Blaschke T. 2020. Comparisons of diverse machine learning approaches for wildfire susceptibility mapping. Symmetry. 12(4):604.
  • Ghorbanzadeh O, Blaschke T, Gholamnia K, Aryal J. 2019a. Forest fire susceptibility and risk mapping using social/infrastructural vulnerability and environmental variables. Fire. 2(3):27–50.
  • Ghorbanzadeh O, Feizizadeh B, Blaschke T. 2018. Multi-criteria risk evaluation by integrating an analytical network process approach into GIS-based sensitivity and uncertainty analyses. Geomat Nat Hazards Risk. 9(1):127–151.
  • Ghorbanzadeh O, Kamran KV, Blaschke T, Aryal J, Naboureh A, Einali J, Bian J. 2019b. Spatial prediction of wildfire susceptibility using field survey GPS data and machine learning approaches. Fire. 2(3):23–43.
  • Gigović L, Pourghasemi HR, Drobnjak S, Bai S. 2019. Testing a new ensemble model based on SVM and random forest in forest fire susceptibility assessment and its mapping in Serbia’s Tara National Park. Forests. 10(5):408.
  • Gralewicz NJ, Nelson TA, Wulder MA. 2012. Factors influencing national scale wildfire susceptibility in Canada. For Ecol Manage. 265:20–29. https://doi.org/http://dx.doi.org/10.1016/j.foreco.2011.10.031.
  • Green ME, Deluca TF, Kaiser KWD. 2020. Modeling wildfire using evolutionary cellular automata. GECCO 2020 – Proceedings of the 2020 Genetic and Evolutionary Computation Conference; Cancún, Mexico. p. 1089–1097. https://doi.org/https://doi.org/10.1145/3377930.3389836
  • Hoang ND, Tien Bui D. 2018. Spatial prediction of rainfall-induced shallow landslides using gene expression programming integrated with GIS: a case study in Vietnam. Nat Hazards. 92(3):1871–1887.
  • Hong H, Jaafari A, Zenner EK. 2019. Predicting spatial patterns of wildfire susceptibility in the Huichang County, China: an integrated model to analysis of landscape indicators. Ecol Indic. 101:878–891.
  • Hong H, Naghibi SA, Moradi Dashtpagerdi M, Pourghasemi HR, Chen W. 2017. A comparative assessment between linear and quadratic discriminant analyses (LDA-QDA) with frequency ratio and weights-of-evidence models for forest fire susceptibility mapping in China. Arab J Geosci. 10(7): 167.
  • Hong H, Tsangaratos P, Ilia I, Liu J, Zhu AX, Xu C. 2018. Applying genetic algorithms to set the optimal combination of forest fire related variables and model forest fire susceptibility based on data mining models. The case of Dayu County, China. Sci Total Environ. 630:1044–1056.
  • Jaafari A, Gholami DM, Zenner EK. 2017. A Bayesian modeling of wildfire probability in the Zagros Mountains, Iran. Ecol Inform. 39:32–44.
  • Jaafari A, Mafi-Gholami D, Thai Pham B, Tien Bui D. 2019c. Wildfire probability mapping: Bivariate vs. Multivariate statistics. Remote Sens. 11(6):618.
  • Jaafari A, Pourghasemi HR. 2019. Factors influencing regional-scale wildfire probability in Iran. In: In Spatial modeling in GIS and R for Earth and environmental sciences. Elsevier; p. 607–619. https://doi.org/https://doi.org/10.1016/b978-0-12-815226-3.00028-4.
  • Jaafari A, Razavi Termeh SV, Bui DT. 2019a. Genetic and firefly metaheuristic algorithms for an optimized neuro-fuzzy prediction modeling of wildfire probability. J Environ Manage. 243:358–369.
  • Jaafari A, Zenner EK, Panahi M, Shahabi H. 2019b. Hybrid artificial intelligence models based on a neuro-fuzzy system and metaheuristic optimization algorithms for spatial prediction of wildfire probability. Agric for Meteorol. 266–267:198–207.
  • Jaafari A, Zenner EK, Pham BT. 2018. Wildfire spatial pattern analysis in the Zagros Mountains, Iran: a comparative study of decision tree based classifiers. Ecol Inform. 43:200–211.
  • Jain P, Coogan SCP, Subramanian SG, Crowley M, Taylor S, Flannigan MD. 2020. A review of machine learning applications in wildfire science and management. Environ. Rev.28(4): 478-505.https://doi.org/https://doi.org/10.1139/er-2020-0019
  • Kayadelen C. 2011. Soil liquefaction modeling by genetic expression programming and neuro-fuzzy. Expert Syst Appl. 38(4):4080–4087.
  • Koza JR. 1992. Genetic programming : On the programming of computers by means of natural selection complex adaptive systems. (Vol. 1). MIT press.
  • Lee S, Pradhan B. 2007. Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides. 4(1):33–41.
  • Leonard J, Blanchi R. 2012. Queensland Bushfire Risk Planning Project. Stage 1 Report for the Department of Community Safety–Strategic Policy Division Final Version–Approved by CSIRO, July.
  • Leuenberger M, Parente J, Tonini M, Pereira MG, Kanevski M. 2018. Wildfire susceptibility mapping: deterministic vs. stochastic approaches. Environ Model Softw. 101:194–203.
  • Ling CX, Huang J, Zhang H. 2003. AUC: a statistically consistent and more discriminating measure than accuracy. IJCAI Int Jt Conf Artif Intell. 3: 519–524.
  • Malak DA, Pausas JG. 2006. Fire regime and post-fire Normalized Difference Vegetation Index changes in the eastern Iberian Peninsula (Mediterranean basin). Int J Wildland Fire. 15(3):407–413.
  • Moayedi H, Mehrabi M, Bui DT, Pradhan B, Foong LK. 2020. Fuzzy-metaheuristic ensembles for spatial assessment of forest fire susceptibility. J Environ Manage. 260:109867.
  • Mousavi SM, Aminian P, Gandomi AH, Alavi AH, Bolandi H. 2012. A new predictive model for compressive strength of HPC using gene expression programming. Adv Eng Softw. 45(1):105–114. https://doi.org/http://dx.doi.org/10.1016/j.advengsoft.2011.09.014.
  • Nicholls N, Lucas C. 2007. Interannual variations of area burnt in Tasmanian bushfires: relationships with climate and predictability. Int J Wildland Fire. 16(5):540–546.
  • O’Connor CD, Thompson MP, Rodríguez y Silva F. 2016. Getting ahead of the wildfire problem: quantifying and mapping management challenges and opportunities. Geosciences. 6(3):35.
  • OSM. 2021. OpenStreetMap. [accessed 2020 Dec 01]. https://www.openstreetmap.org/#map=4/-28.15/133.28.
  • Pham BT, Jaafari A, Avand M, Al-Ansari N, Du T,H, Yen HP, Phong T, Van Nguyen DH, Van Le H, Mafi-Gholami D, et al. 2020. Performance evaluation of machine learning methods for forest fire modeling and prediction. Symmetry (Basel). 12(6):1022.
  • Pourghasemi HR. 2016. GIS-based forest fire susceptibility mapping in Iran: a comparison between evidential belief function and binary logistic regression models. Scand J for Res. 31(1):80–98.
  • R Core Team. 2020. R: a language and environment for statistical computing. Vienna (Austria): R Foundation for Statistical Computing. [accessed 2021 Dec 05]. https://www.R-project.org/.
  • Razavi-Termeh SV, Sadeghi-Niaraki A, Choi SM. 2020. Ubiquitous GIS-based forest fire susceptibility mapping using artificial intelligence methods. Remote Sens. 12(10):1689.
  • Sachdeva S, Bhatia T, Verma AK. 2018. GIS-based evolutionary optimized Gradient Boosted Decision Trees for forest fire susceptibility mapping. Nat Hazards. 92(3):1399–1418.
  • Shang C, Wulder MA, Coops NC, White JC, Hermosilla T. 2020. Spatially-explicit prediction of wildfire burn probability using remotely-sensed and ancillary data. Can J Remote Sens. 46(3):1–17.
  • Tehrany MS, Jones S, Shabani F, Martínez-Álvarez F, Tien Bui D. 2019. A novel ensemble modeling approach for the spatial prediction of tropical forest fire susceptibility using LogitBoost machine learning classifier and multi-source geospatial data. Theor Appl Climatol. 137(1–2):637–653.
  • Tien Bui D, Bui QT, Nguyen QP, Pradhan B, Nampak H, Trinh PT. 2017. A hybrid artificial intelligence approach using GIS-based neural-fuzzy inference system and particle swarm optimization for forest fire susceptibility modeling at a tropical area. Agric For Meteorol. 233:32–44. https://doi.org/http://dx.doi.org/10.1016/j.agrformet.2016.11.002.
  • Tien Bui D, Le KTT, Nguyen VC, Le HD, Revhaug I. 2016. Tropical forest fire susceptibility mapping at the Cat Ba National Park area, Hai Phong City, Vietnam, using GIS-based Kernel logistic regression. Remote Sens. 8(4):315–347.
  • Tolhurst KG, Shields B, Chong DM. 2008. Phoenix: development and application of a bushfire risk management tool. Aust J Emerg Manag. 23(4):47.
  • Tonini M, D’andrea M, Biondi G, Esposti SD, Trucchia A, Fiorucci P. 2020. A machine learning-based approach for wildfire susceptibility mapping. The case study of the Liguria region in Italy. Geosciences. 10(3): 105.
  • USGS. 2021. EarthExplorer. [accessed 2020 Dec 01]. https://earthexplorer.usgs.gov.
  • Valdez MC, Chang KT, Chen CF, Chiang SH, Santos JL. 2017. Modelling the spatial variability of wildfire susceptibility in Honduras using remote sensing and geographical information systems. Geomat Nat Hazards Risk. 8(2):876–892.
  • Van Westen CJ, Rengers N, Soeters R. 2003. Use of geomorphological expert knowledge in indirect landslide hazard assessment. Nat Hazards. 30(3):399–419.
  • Werner J, Lyons S. 2020. The size of Australia’s bushfire crisis captured in five big numbers. ABC Sci. [accessed 2021 Mar 8]. https://www.abc.net.au/news/science/2020-03-05/bushfire-crisis-five-big-numbers/12007716.
  • You W, Lin L, Wu L, Ji Z, Yu J, Zhu J, Fan Y, He D. 2017. Geographical information system-based forest fire risk assessment integrating national forest inventory data and analysis of its spatiotemporal variability. Ecol Indic. 77:176–184. https://doi.org/http://dx.doi.org/10.1016/j.ecolind.2017.01.042.
  • Zakaria NA, Azamathulla HM, Chang CK, Ghani AA. 2010. Gene expression programming for total bed material load estimation-a case study. Sci Total Environ. 408(21):5078–5085. https://doi.org/http://dx.doi.org/10.1016/j.scitotenv.2010.07.048.
  • Zhang G, Wang M, Liu K. 2019. Forest fire susceptibility modeling using a convolutional neural network for Yunnan Province of China. Int J Disaster Risk Sci. 10(3):386–403.
  • Zhang Y, Lim S, Sharples JJ. 2015. Development of spatial models for bushfire occurrence in South-Eastern Australia. 21st International Congress on Modelling and Simulation, Gold Coast, Australia. https://116.90.59.164/modsim2015/A4/zhang.pdf.
  • Zhang Y, Lim S, Sharples JJ. 2016. Modelling spatial patterns of wildfire occurrence in South-Eastern Australia. Geomat Nat Hazards Risk. 7(6):1800–1815.