1,062
Views
0
CrossRef citations to date
0
Altmetric
Articles

Assessment of the temporal–spatial evolution of subsidence and its driving mechanism in the Beijing Plain (China) by using SAR interferometry and geological data

, , , , , & show all
Pages 2708-2735 | Received 06 Apr 2021, Accepted 24 Aug 2021, Published online: 20 Sep 2021

References

  • Amelung F, Galloway DL, Bell JW, Zebker HA, Laczniak RL. 1999. Sensing the ups and downs of Las Vegas-InSAR reveals structural control of land subsidence and aquifer-system deformation. Geology 27(6):483–486.
  • ASAR Product Handbook of Envisat. 2007. Available online: https://earth.esa.int/pub/ESA_DOC/Envisat/ASAR/asar.ProductHandbook.2_2.pdf.
  • Bai LY, Li X, Qin HM, Zhang XL, Zhang YZ. 2018. Study on the cyclic stratigraphy activity of Nankou–Sunhe fault in Beijing Plain since quaternary and its tectonic significance. Geoscience. 32(2):270–278.
  • Bai LY, Zhang L, X. M. Wang, J. M C, Yang TS, Wu HC, He J, et al. 2014. Quaternary magnetostratigraphic time framework constraints on activity characteristics of the Shunyi Fault, Beijing Plain. Geoscience. 28(6):1234–1242.
  • Beijing Water Resources Bulletin. 2007–2019. http://swj.beijing.gov.cn/zwgk/szygb/.
  • Beijing. 2019. https://baike.baidu.com/item/beijing/128981.
  • Bell JW, Amelung F, Ferretti A, Bianchi M, Novali F. 2008. Permanent scatterer InSAR reveals seasonal and long-term aquifer-system response to groundwater pumping and artificial recharge. Water Resour Res. 44(2):1–18.
  • Berardino P, Fornaro G, Lanari R, Sansosti E. 2002. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans Geosci Remote Sens. 40(11):2375–2383.
  • Bianchini S, Moretti S. 2015. Analysis of recent ground subsidence in the Sibari plain (Italy) by means of satellite SAR interferometry-based methods. Int J Remote Sens. 36(18):4550–4569.
  • Bianchini S, Solari L, Soldato MD, Raspini F, Montalti R, Ciampalini A, et al. 2019. Ground subsidence susceptibility (GSS) mapping in Grosseto Plain (Tuscany, Italy) based on satellite InSAR data using frequency ratio and fuzzy logic. Remote Sens. 11(17):1–27.
  • Cai XM, Luan YB, Guo GX, Liu H. 2009. Geological system in Beijing Plain area. Theor Investig. 4(3):6–12.
  • Canova F, Tolomei C, Salvi S, Toscani G, Seno S. 2012. Land subsidence along the Ionian coast of SE Sicily (Italy), detection and analysis via Small Baseline Subset (SBAS) multitemporal differential SAR interferometry. Earth Surface Processes and Landforms. 37(3):273–286.
  • Chaussard E, Amelung F, Abidin H, Hong S-H. 2013. Sinking cities in Indonesia: ALSO PALSAR detects rapid subsidence due to groundwater and gas extraction. Remote Sens Environ. 128:150–161.
  • Chaussard E, Wdowinski S, Cabral-Cano E, Amelung F. 2014. Land subsidence in Central Mexico detected by ALOS InSAR time-series. Remote Sens Environ. 140:94–106.
  • Chatterjee RS, Fruneau B, Rudant JP, Roy PS, Frison P-L, Lakhera RC, Dadhwal VK, Saha R. 2006. Subsidence of Kolkata (Calcutta) City, India during the 1990s as observed from space by differential synthetic aperture radar interferometry (D-InSAR) technique. Remote Sens Environ. 102(1–2):176–185.
  • Chen FL, Lin H, Li Z, Chen Q, Zhou JM. 2012. Interaction between permafrost and infrastructure along the Qinghai–Tibet Railway detected via jointly analysis of C- and L-band small baseline SAR interferometry. Remote Sens Environ. 123:532–540.
  • Chen FL, Lin H, Zhou W, Hong TH, Wang G. 2013. Surface deformation detected by ALOS PALSAR small baseline SAR interferometry over permafrost environment of Beiluhe section, Tibet Plateau, China. Remote Sens Environ. 138:10–18.
  • Cianflone G, Tolomei C, Brunori CA, Dominici R. 2015. InSAR time series analysis of natural and anthropogenic coastal plain subsidence: the case of Sibari (Southern Italy). Remote Sens. 7(12):16004–16023.
  • Cigna F, Cabral-Cano E, Osmanoglu B, Dixon TH, Wdowinski S. 2011. Detecting subsidence-induced faulting in Mexican urban areas by means of persistent scatterer interferometry and subsidence horizontal gradient mapping. Geoscience & Remote Sensing Symposium. IEEE. 2125-2128..
  • Cigna F, Osmanoğlu B, Cabral-Cano E, Dixon TH, Ávila-Olivera JA, Garduño-Monroy VH, DeMets C, Wdowinski S. 2012. Monitoring land subsidence and its induced geological hazard with synthetic aperture radar interferometry: a case study in Morelia, Mexico. Remote Sens Environ. 117:146–161.
  • Cui WJ, Lei KC. 2018. Some ideas on land subsidence working from the view of coordinated development in Beijing–Tianjin–Hebei regions. Urban Geol. 13(2):25–30.
  • Elias P, Kontoes C, Papoutsis I, Kotsis I, Marinou A, Paradissis D, Sakellariou D. 2009. Permanent scatterer InSAR analysis and validation in the Gulf of Corinth. Sensors (Basel)). 9(1):46–55.
  • Erban LE, Gorelick SM, Zebker HA. 2014. Groundwater extraction, land subsidence, and sea-level rise in the Mekong Delta, Vietnam. Environ Res Lett. 9(8):084010.
  • Ferretti A, Prati C, Rocca F. 2000. Non-linear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans Geosci Remote Sens. 38(5):2202–2212.
  • Ferretti A, Prati A, Rocca F. 2001. Permanent scatterers in SAR. IEEE Trans Geosci Remote Sens. 39(1):8–20.
  • Figueroa-Miranda S, Hernández-Madrigal VM, Tuxpan-Vargas J, Villaseñor-Reyes CI. 2020. Evolution assessment of structurally-controlled differential subsidence using SBAS and PS interferometry in an emblematic case in Central Mexico. Eng Geol. 279:105860.
  • Ge DQ, Wang Y, Guo XF, Liu SW, Fan JH. 2007. Surface deformation monitoring with multi-baseline D-InSAR based on coherent point target. J Remote Sens. 11(4):574–580.
  • Ge DQ, Wang Y, Guo XF, Fan JH, Liu SW. 2008. Surface deformation field monitoring by use of small-baseline differential interferograms stack. J Geodesy Geodyn. 28(2):61–66.
  • Ge DQ, Zhang L, Wang Y, Guo XF, Wang Y. 2017. Regional ground settlement monitoring method based on multiple track and long strip CTInSAR (coherent target synthetic aperture radar interferometry).
  • Guo HP, Bai JB, Zhang YQ, Wang LY, Shi JS, Li WP, et al. 2017. The evolution characteristics and mechanism of land subsidence in typical areas of the North China Plain. Geol China. 44(6):1115–1127.
  • Heleno SIN, Oliveira LGS, Henriques MJ, Falcão AP, Lima JNP, Cooksley G, Ferretti A, Fonseca AM, Lobo-Ferreira JP, Fonseca JFBD, et al. 2011. Persistent scatterers interferometry detects and measures ground subsidence in Lisbon. Remote Sens Environ. 115(8):2152–2167.
  • Hooper A, Zebker H, Segall P, Kampes B. 2004. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys Res Lett. 31:L23611.
  • Hu B, Wang HS, Sun YL, Hou JG, Liang J. 2014. Long-term land subsidence monitoring of Beijing (China) using the Small Baseline Subset (SBAS) technique. Remote Sens. 6(5):3648–3661.
  • Hu L, Dai K, Xing C, Li Z, Tomás R, Clark B, Shi X, Chen M, Zhang R, Qiu Q, et al. 2019. Land subsidence in Beijing and its relationship with geological faults revealed by Sentinel-1 InSAR observations. Int J Appl Earth Obs Geoinform. 82:101886.
  • Jia SM, Wang HG, Zhao SS, Luo Y. 2007. A tentative study of the mechanism of land subsidence in Beijing. Anal Res. 2(1):20–26.
  • Jiang LM, Lin H, Ma JW, Kong B, Wang Y. 2011. Potential of small-baseline SAR interferometry for monitoring land subsidence related to underground coal fires: Wuda (Northern China) case study. Remote Sens Environ. 115(2):257–268.
  • Lei KC, Luo Y, Chen BB, Guo GX, Zhou Y. 2016. Distribution characteristics and influence factors of land subsidence in Beijing area. Geol Chain. 43(6):2216–2225.
  • Li M, Ge D, Liu B, Zhang L, Wang Y, Guo X, Wang Y, Zhang D. 2019. Research on development characteristics and failure mechanism of land subsidence and ground fissure in Xi'an, monitoring by using time-series SAR interferometry. Geomat Nat Hazards Risk. 10(1):699–718.
  • Liu YP, Zhang FL, Wang Y, Hu LY. 2014. Research on land subsidence of recent years Beijing. Sci Surv Mapp. 39(10):68–70.
  • Liu MK, Kou WJ, Luo Y, Wang R, Tian F, Zhao CX, et al. 2016. Analysis of the relationship between groundwater exploitation and land subsidence in Beijing. Urban Geol. 11(1):21–25.
  • Luo Y, Jia SM, Zhao B, Tian F. 2011. Characteristics and causes of land subsidence in the south of Beijing. Res Investig. 6(3):1–21.
  • Luo Y. 2017. Research in the new trends of Beijing land subsidence. Shanghai Land & Resources. 38(2):13–17.
  • Haghshenas Haghighi M, Motagh M. 2019. Ground surface response to continuous compaction of aquifer system in Tehran, Iran: Results from a long-term multi-sensor InSAR analysis. Remote Sens Environ. 221:534–550.
  • Meisina C, Zucca F, Fossati D, Ceriani M, Allievi J. 2006. Ground deformation monitoring by using the permanent scatterers technique: the example of the Oltrepo Pavese (Lombardia, Italy). Eng Geol. 88(3–4):240–259.
  • Metternicht G, Hurni L, Gogu R. 2005. Remote sensing of landslides: an analysis of the potential contribution to geo-spatial systems for hazard assessment in mountainous environments. Remote Sens Environ. 98(2–3):284–303.
  • Pacheco J, Arzate J, Rojas E, Arroyo M, Yutsis V, Ochoa G. 2006. Delimitation of ground failure zones due to land subsidence using gravity data and finite element modeling in the Querétaro valley, México. Eng Geol. 84(3–4):143–160.
  • Qu FF, Zhang Q, Lu Z, Zhao CY, Yang CS, Zhang J. 2014. Land subsidence and ground fissures in Xi'an, China 2005–2012 revealed by multi-band InSAR time-series analysis. Remote Sens Environ. 155:366–376.
  • Radarsat-2 Satellite Characteristics. 2015. http://www.asc-csa.gc.ca/eng/satellites/radarsat/radarsat-tableau.asp.
  • Raucoules D, Cartannaz C, Mathieu F, Midot D. 2013. Combined use of space-borne SAR interferometric techniques and ground-based measurements on a 0.3 km2 subsidence phenomenon. Remote Sens Environ. 139:331–339.
  • Scharroo R, Visser P. 1998. Precise orbit determination and gravity field improvement for the ERS satellites. J Geophys Res. 103(C4):8113–8127.
  • Sharma P, Jones CE, Dudas J, Bawden GW, Deverel S. 2016. Monitoring of subsidence with UAVSAR on Sherman Island in California's Sacramento-San Joaquin Delta. Remote Sens Environ. 181:218–236.
  • Tian F, Luo Y, Zhou Y, Jiang Y, Yang Y, Chen ZZ. 2014. Dynamic changes of layered monitored land subsidence in Beijing. Shanghai Land Resour. 35(4):76–80.
  • Tian F, Luo Y, Zhou Y, Li Y, Kou WJ, Jiang Y, et al. 2017. Contrastive analysis of spatial–temporal evolution between land subsidence and groundwater exploitation in Beijing. South-to-North Water Transfers Water Sci Technol. 15(2):163–169.
  • Yang Y. 2013. Effectiveness of InSAR monitoring of land subsidence in Beijing. Shanghai Land Resour. 34(4):21–24.
  • Yang Y, Zheng FD, Liu LC, Wang SF, Wang R. 2013. Study on the correlation between groundwater level and ground subsidence in Beijing plain areas. Geotechnical Investigation & Surveying. (8):44–48.
  • Zhang Q, Zhao CY, Ding XL, Chen YQ, Wang L, Huang GW, et al. 2009. Research on recent characteristics of spatio-temporal evolution and mechanism of Xi’an land subsidence and ground fissure by using GPS and InSAR techniques. Chin J Geophys. 52(5):1214–1222.
  • Zhang XL, Zhang L, Cai XM, Bai LY. 2016. A study of structure and activity characteristics of the northern segment of Huangzhuang–Gaoliying fault in Beijing Plain area. Geol China. 43(4):1258–1265.
  • Zhao ZH. 2009. Analysis of the neotectonic activity and the bad geological phenomenon caused by it in Beijing Plain areas. J Geol Haz Environ Preserv. 20(2):66–70.