2,336
Views
6
CrossRef citations to date
0
Altmetric
Article

Potential landslides identification based on temporal and spatial filtering of SBAS-InSAR results

ORCID Icon, , ORCID Icon, &
Pages 52-75 | Received 31 Aug 2022, Accepted 09 Nov 2022, Published online: 19 Dec 2022

References

  • Akbarimehr M, Motagh M, Haghshenas-Haghighi M. 2013. Slope stability assessment of the Sarcheshmeh landslide, Northeast Iran, investigated using InSAR and GPS observations. Remote Sens. 5(8):3681–3700.
  • Bayer B, Simoni A, Mulas M, Corsini A, Schmidt D. 2018. Deformation responses of slow moving landslides to seasonal rainfall in the Northern Apennines, measured by InSAR. Geomorphology. 308:293–306.
  • Berardino P, Fornaro G, Lanari R, Sansosti E. 2002. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans Geosci Remote Sens. 40(11):2375–2383.
  • Buytaert W, Celleri R, Willems P, Bièvre BD, Wyseure G. 2006. Spatial and temporal rainfall variability in mountainous areas: a case study from the south Ecuadorian Andes. J Hydrol. 329(3–4):413–421.
  • Cantarino I, Carrion MA, Goerlich F, Martinez Ibañez V. 2019. A ROC analysis-based classification method for landslide susceptibility maps. Landslides. 16(2):265–282.
  • Chen T, Zhu L, Niu R-q, Trinder CJ, Peng L, Lei T. 2020. Mapping landslide susceptibility at the Three Gorges Reservoir, China, using gradient boosting decision tree, random forest and information value models. J Mt Sci. 17(3):670–685.
  • Chen W, Pourghasemi HR, Naghibi SA. 2018. A comparative study of landslide susceptibility maps produced using support vector machine with different kernel functions and entropy data mining models in China. Bull Eng Geol Environ. 77(2):647–664.
  • Chen W, Wang J, Xie X, Hong H, Van Trung N, Bui DT, Wang G, Li X. 2016. Spatial prediction of landslide susceptibility using integrated frequency ratio with entropy and support vector machines by different kernel functions. Environ Earth Sci. 75(20):1344.
  • Ciampalini A, Raspini F, Bianchini S, Frodella W, Bardi F, Lagomarsino D, Di Traglia F, Moretti S, Proietti C, Pagliara P, et al. 2015. Remote sensing as tool for development of landslide databases: the case of the Messina Province (Italy) geodatabase. Geomorphology. 249:103–118.
  • Devara M, Tiwari A, Dwivedi R. 2021. Landslide susceptibility mapping using MT-InSAR and AHP enabled GIS-based multi-criteria decision analysis. Geomat Nat Hazards Risk. 12(1):675–693.
  • Di B-f, Zhang K-s, Tang Y, Zhang M-h, Ustin SL. 2013. The development of a geographic information system (GIS) database for Jiuzhaigou national nature reserve and its application. J Mt Sci. 10(3):398–409.
  • Dong J, Zhang L, Liao M, Gong J. 2019. Improved correction of seasonal tropospheric delay in InSAR observations for landslide deformation monitoring. Remote Sens Environ. 233:111370.
  • Dong S, Samsonov S, Yin H, Ye S, Cao Y. 2014. Time-series analysis of subsidence associated with rapid urbanization in Shanghai, China measured with SBAS InSAR method. Environ Earth Sci. 72(3):677–691.
  • Fourniadis IG, Liu JG, Mason PJ. 2007. Landslide hazard assessment in the Three Gorges Area, China, using ASTER imagery: Wushan–Badong. Geomorphology. 84(1–2):126–144.
  • Fustos-Toribio I, Manque-Roa N, Vásquez Antipan D, Hermosilla Sotomayor M, Letelier Gonzalez V. 2022. Rainfall-induced landslide early warning system based on corrected mesoscale numerical models: an application for the southern Andes. Nat Hazards Earth Syst Sci. 22(6):2169–2183.
  • Ge D, Dai K, Guo Z, Li Z. 2019. Early identification of serious geological hazards with integrated remote sensing technologies: thoughts and recommendations. Geomat Inf Sci Wuhan Univ. 44:949–956.
  • Ghorbanzadeh O, Rostamzadeh H, Blaschke T, Gholaminia K, Aryal J. 2018. A new GIS-based data mining technique using an adaptive neuro-fuzzy inference system (ANFIS) and k-fold cross-validation approach for land subsidence susceptibility mapping. Nat Hazards. 94(2):497–517.
  • Goyes-Peñafiel P, Hernandez-Rojas A. 2021. Landslide susceptibility index based on the integration of logistic regression and weights of evidence: a case study in Popayan, Colombia. Eng Geol. 280:105958.
  • Guo R, Li S, Chen Y, Li X, Yuan L. 2021. Identification and monitoring landslides in longitudinal range-gorge region with InSAR fusion integrated visibility analysis. Landslides. 18(2):551–568.
  • Hadi SJ, Tombul M. 2018. Comparison of spatial interpolation methods of precipitation and temperature using multiple integration periods. J Indian Soc Remote Sens. 46(7):1187–1199.
  • Hussain S, Hongxing S, Ali M, Ali M. 2022. PS-InSAR based validated landslide susceptibility modelling: a case study of Ghizer valley, Northern Pakistan. Geocarto Int. 37(13):3941–3962.
  • Intrieri E, Raspini F, Fumagalli A, Lu P, Del Conte S, Farina P, Allievi J, Ferretti A, Casagli N. 2018. The Maoxian landslide as seen from space: detecting precursors of failure with Sentinel-1 data. Landslides. 15(1):123–133.
  • Jolivet R, Agram PS, Lin NY, Simons M, Doin M‐P, Peltzer G, Li Z. 2014. Improving InSAR geodesy using global atmospheric models. J Geophys Res Solid Earth. 119(3):2324–2341.
  • Juang CH. 2021. BFTS – Engineering geologists’ field station to study reservoir landslides. Eng Geol. 284:106038.
  • Liu Z, Qiu H, Zhu Y, Liu Y, Yang D, Ma S, Zhang J, Wang Y, Wang L, Tang B, et al. 2022. Efficient identification and monitoring of landslides by time-series InSAR combining single- and multi-look phases. Remote Sens. 14(4):1026.
  • Lu P, Bai S, Tofani V, Casagli N. 2019. Landslides detection through optimized hot spot analysis on persistent scatterers and distributed scatterers. ISPRS J Photogramm Remote Sens. 156:147–159.
  • Mallick J, Singh RK, AlAwadh MA, Islam S, Khan RA, Qureshi MN. 2018. GIS-based landslide susceptibility evaluation using fuzzy-AHP multi-criteria decision-making techniques in the Abha Watershed, Saudi Arabia. Environ Earth Sci. 77(7):276.
  • Marjanović M, Kovačević M, Bajat B, Voženílek V. 2011. Landslide susceptibility assessment using SVM machine learning algorithm. Eng Geol. 123(3):225–234.
  • Medhat NI, Yamamoto M‐y, Tolomei C, Harbi A, Maouche S. 2022. Multi‐temporal InSAR analysis to monitor landslides using the small baseline subset (SBAS) approach in the Mila Basin, Algeria. Terra Nova. 34(5):407–423.
  • Milillo P, Sacco G, di Martire D, Hua H. 2022. Neural network pattern recognition experiments toward a fully automatic detection of anomalies in InSAR time series of surface deformation. Front Earth Sci. 9:728643.
  • Morelli M, Piana F, Mallen L, Nicolò G, Fioraso G. 2011. Iso-kinematic maps from statistical analysis of PS-InSAR data of Piemonte, NW, Italy: comparison with geological kinematic trends. Remote Sens Environ. 115(5):1188–1201.
  • Niu R, Wu X, Yao D, Peng L, Ai L, Peng J. 2014. Susceptibility Assessment of Landslides Triggered by the Lushan Earthquake, April 20, 2013, China. IEEE J Sel Top Appl Earth Observations Remote Sensing. 7(9):3979–3992.
  • Novellino A, Cesarano M, Cappelletti P, Di Martire D, Di Napoli M, Ramondini M, Sowter A, Calcaterra D. 2021. Slow-moving landslide risk assessment combining machine learning and InSAR techniques. Catena. 203:105317.
  • Novellino A, Cigna F, Sowter A, Ramondini M, Calcaterra D. 2017. Exploitation of the Intermittent SBAS (ISBAS) algorithm with COSMO-SkyMed data for landslide inventory mapping in north-western Sicily, Italy. Geomorphology. 280:153–166.
  • Rong G, Alu S, Li K, Su Y, Zhang J, Zhang Y, Li T. 2020. Rainfall induced landslide susceptibility mapping based on Bayesian optimized random forest and gradient boosting decision tree models—a case study of Shuicheng County, China. Water. 12(11):3066.
  • Rosi A, Tofani V, Tanteri L, Tacconi Stefanelli C, Agostini A, Catani F, Casagli N. 2018. The new landslide inventory of Tuscany (Italy) updated with PS-InSAR: geomorphological features and landslide distribution. Landslides. 15(1):5–19.
  • Schlögl M, Gutjahr K, Fuchs S. 2022. The challenge to use multi-temporal InSAR for landslide early warning. Nat Hazards. 112(3):2913–2919.
  • Singh LP, van Westen CJ, Ray PKC, Pasquali P. 2005. Accuracy assessment of InSAR derived input maps for landslide susceptibility analysis: a case study from the Swiss Alps. Landslides. 2(3):221–228.
  • Singh N, Maddheshiya SK, Jha M, Tignath S, Singh BN. 2020. Hydrogeomorphic assessment of badlands in part of the Mandakini River watershed, Chitrakoot, India. Arab J Geosci. 13(20):1066.
  • Song Y, Niu R, Xu S, Ye R, Peng L, Guo T, Li S, Chen T. 2018. Landslide susceptibility mapping based on weighted gradient boosting decision tree in Wanzhou section of the Three Gorges Reservoir Area (China). ISPRS Int J Geoinf. 8(1):4.
  • Su X-j, Zhang Y, Meng X-m, Yue D-x, Ma J-h, Guo F-y, Zhou Z-q, Rehman MU, Khalid Z, Chen G, et al. 2021. Landslide mapping and analysis along the China-Pakistan Karakoram Highway based on SBAS-InSAR detection in 2017. J Mt Sci. 18(10):2540–2564.
  • Sun D, Xu J, Wen H, Wang D. 2021. Assessment of landslide susceptibility mapping based on Bayesian hyperparameter optimization: a comparison between logistic regression and random forest. Eng Geol. 281:105972.
  • Suzuki S, Kankaku Y, Osawa Y. 2011. Development status of PALSAR-2 onboard ALOS-2. In: Meynart R, Neeck SP, Shimoda H, editors. SPIE Remote Sensing. Bellingham, WA: International Society for Optics and Photonics. p. 81760Q.
  • Tehrany MS, Pradhan B, Mansor S, Ahmad N. 2015. Flood susceptibility assessment using GIS-based support vector machine model with different kernel types. Catena. 125:91–101.
  • Tien Bui D, Tuan TA, Klempe H, Pradhan B, Revhaug I. 2016. Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides. 13(2):361–378.
  • Tizzani P, Berardino P, Casu F, Euillades P, Manzo M, Ricciardi G, Zeni G, Lanari R. 2007. Surface deformation of Long Valley caldera and Mono Basin, California, investigated with the SBAS-InSAR approach. Remote Sens Environ. 108(3):277–289.
  • van Natijne AL, Bogaard TA, van Leijen FJ, Hanssen RF, Lindenbergh RC. 2022. World-wide InSAR sensitivity index for landslide deformation tracking. Int J Appl Earth Obs Geoinf. 111:102829.
  • Wang G, Lei X, Chen W, Shahabi H, Shirzadi A. 2020. Hybrid computational intelligence methods for landslide susceptibility mapping. Symmetry. 12(3):325.
  • Wasowski J, Bovenga F. 2014. Investigating landslides and unstable slopes with satellite multi temporal interferometry: current issues and future perspectives. Eng Geol. 174:103–138.
  • Xiong Z, Feng G, Feng Z, Miao L, Wang Y, Yang D, Luo S. 2020. Pre- and post-failure spatial-temporal deformation pattern of the Baige landslide retrieved from multiple radar and optical satellite images. Eng Geol. 279:105880. https://doi.org/10.1016/j.enggeo.2020.105880
  • Yao X, Tham LG, Dai FC. 2008. Landslide susceptibility mapping based on support vector machine: a case study on natural slopes of Hong Kong, China. Geomorphology. 101(4):572–582.
  • Yin Y, Zheng W, Liu Y, Zhang J, Li X. 2010. Integration of GPS with InSAR to monitoring of the Jiaju landslide in Sichuan, China. Landslides. 7(3):359–365.
  • Youssef AM, Pourghasemi HR. 2021. Landslide susceptibility mapping using machine learning algorithms and comparison of their performance at Abha Basin, Asir Region, Saudi Arabia. Geosci Front. 12(2):639–655.
  • Zhao L, Wu X, Niu R, Wang Y, Zhang K. 2020. Using the rotation and random forest models of ensemble learning to predict landslide susceptibility. Geomatics Nat Hazards Risk. 11(1):1542–1564.
  • Zhao R, Li Z-w, Feng G-c, Wang Q-j, Hu J. 2016. Monitoring surface deformation over permafrost with an improved SBAS-InSAR algorithm: with emphasis on climatic factors modeling. Remote Sens Environ. 184:276–287.
  • Zhu K, Xu P, Cao C, Zheng L, Liu Y, Dong X. 2021. Preliminary identification of geological hazards from Songpinggou to Feihong in Mao County along the Minjiang River using SBAS-InSAR technique integrated multiple spatial analysis methods. Sustainability. 13(3):1017.