662
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Study on the socioeconomic and climatic effects of forest fire incidence in the Changbai Mountain area based on a cross-classified multilevel model

, , , &
Article: 2190859 | Received 26 Dec 2022, Accepted 27 Feb 2023, Published online: 23 Mar 2023

References

  • Abatzoglou JT, Williams AP, Barbero R. 2019. Global emergence of anthropogenic climate change in fire weather indices. Geophys Res Lett. 46(1):326–336.
  • Abatzoglou JT, Williams AP, Boschetti L, Zubkova M, Kolden CA. 2018. Global patterns of interannual climate-fire relationships. Glob Chang Biol. 24(11):5164–5175.
  • Andela N, Morton DC, Giglio L, Chen Y, Van Der Werf GR, Kasibhatla PS, Defries RS, Collatz GJ, Hantson S, Kloster S, et al. 2017. A human-driven decline in global burned area. Science. 356(6345):1356–1362.
  • Aragao L, Shimabukuro YE. 2010. The incidence of fire in Amazonian forests with implications for REDD. Science. 328(5983):1275–1278.
  • Archibald S, Lehmann CER, Gomez-Dans JL, Bradstock RA. 2013. Defining pyromes and global syndromes of fire regimes. Proc Natl Acad Sci U S A. 110(16):6442–6447.
  • Archibald S, Nickless A, Scholes RJ, Schulze R. 2010. Methods to determine the impact of rainfall on fuels and burned area in southern African savannas. Int J Wildland Fire. 19(6):774–782.
  • Balch JK, Bradley BA, Abatzoglou JT, Nagy RC, Fusco EJ, Mahood AL. 2017. Human-started wildfires expand the fire niche across the United States. Proc Natl Acad Sci U S A. 114(11):2946–2951.
  • Bao KS, Yu XF, Jia L, Wang GP. 2010. Recent carbon accumulation in Changbai Mountain Peatlands, Northeast China. Mt Res Dev. 30(1):33–41.
  • Beck HE, Zimmermann NE, McVicar TR, Vergopolan N, Berg A, Wood EF. 2018. Present and future Koppen-Geiger climate classification maps at 1-km resolution. Sci Data. 5:180214.
  • Bian HF, Zhang HY, Zhou DW, Xu JW, Zhang ZX. 2013. Integrating models to evaluate and map grassland fire risk zones in Hulunbuir of Inner Mongolia, China. Fire Saf J. 61:207–216.
  • D’Este M, Ganga A, Elia M, Lovreglio R, Giannico V, Spano G, Colangelo G, Lafortezza R, Sanesi G. 2020. Modeling fire ignition probability and frequency using Hurdle models: a cross-regional study in Southern Europe. Ecol Process. 9:54.
  • Di Virgilio G, Evans JP, Blake SAP, Armstrong M, Dowdy AJ, Sharples J, McRae R. 2019. Climate change increases the potential for extreme wildfires. Geophys Res Lett. 46(14):8517–8526.
  • Diez-Roux AV. 2000. Multilevel analysis in public health research. Annu Rev Public Health. 21:171–192.
  • Falk DA, Miller C, McKenzie D, Black AE. 2007. Cross-scale analysis of fire regimes. Ecosystems. 10(5):809–823.
  • Ferreira LN, Vega-Oliveros DA, Zhao L, Cardoso MF, Macau EEN. 2020. Global fire season severity analysis and forecasting. Comput Geosci. 134:104339.
  • Fuentes-Santos I, Marey-Perez MF, Gonzalez-Manteiga W. 2013. Forest fire spatial pattern analysis in Galicia (NW Spain). J Environ Manage. 128:30–42.
  • Giglio L, Schroeder W, Justice CO. 2016. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens Environ. 178:31–41.
  • Guo FT, Su ZW, Wang GY, Sun L, Lin FF, Liu AQ. 2016. Wildfire ignition in the forests of southeast China: identifying drivers and spatial distribution to predict wildfire likelihood. Appl Geogr. 66:12–21.
  • Guo WS. 2002. Functional mixed effects models. Biometrics. 58(1):121–128.
  • Hantson S, Andela N, Goulden ML, Randerson JT. 2022. Human-ignited fires result in more extreme fire behavior and ecosystem impacts. Nat Commun. 13(1):2717.
  • He T, Lamont BB, Pausas JG. 2019. Fire as a key driver of Earth’s biodiversity. Biol Rev Camb Philos Soc. 94(6):1983–2010.
  • Hou G. 2012. The study of the vegetation dynamic in eco-climatic regionalization of Changbai Mountains [dissertation]. Changchun: Northeast Normal University.
  • Hutchinson MF, Xu T. 2013. ANUSPLIN version 4.4 user guide. [accessed 2023 Mar 16]. https://fennerschool.anu.edu.au/files/anusplin44.pdf.
  • Iniguez JM, Swetnam TW, Yool SR. 2008. Topography affected landscape fire history patterns in southern Arizona, USA. For Ecol Manage. 256(3):295–303.
  • Jain P, Castellanos-Acuna D, Coogan SCP, Abatzoglou JT, Flannigan MD. 2022. Observed increases in extreme fire weather driven by atmospheric humidity and temperature. Nat Clim Chang. 12(1):63–70.
  • Jolly WM, Cochrane MA, Freeborn PH, Holden ZA, Brown TJ, Williamson GJ, Bowman D. 2015. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat Commun. 6(1):7537.
  • Keeley JE. 2004. Impact of antecedent climate on fire regimes in coastal California. Int J Wildland Fire. 13(2):173–182.
  • Leung Y, Mei C-L, Zhang W-X. 2000. Testing for spatial autocorrelation among the residuals of the geographically weighted regression. Environ Plan A. 32(5):871–890.
  • Leyland AH, Groenewegen PP. 2003. Multilevel modelling and public health policy. Scand J Public Health. 31(4):267–274.
  • Littell JS, McKenzie D, Peterson DL, Westerling AL. 2009. Climate and wildfire area burned in western U.S. ecoprovinces, 1916-2003. Ecol Appl. 19(4):1003–1021.
  • Liu MF, Zhao JJ, Guo XY, Zhang ZX, Tan G, Yang JH. 2017. Study on climate and grassland fire in HulunBuir, Inner Mongolia Autonomous Region, China. Sensors. 17(3):616.
  • Liu Q, Dean AM, Allenby GM. 2012. Bayesian designs for hierarchical linear models. Stat Sinica. 22(1):393–417.
  • Luo RS, Hui DF, Miao N, Liang C, Wells N. 2017. Global relationship of fire occurrence and fire intensity: a test of intermediate fire occurrence-intensity hypothesis. J Geophys Res Biogeosci. 122(5):1123–1136.
  • Matsueda RL, Drakulich KM. 2016. Measuring collective efficacy: a multilevel measurement model for nested data. Sociol Methods Res. 45(2):191–230.
  • Oom D, Pereira JMC. 2013. Exploratory spatial data analysis of global MODIS active fire data. Int J Appl Earth Obs Geoinf. 21:326–340.
  • Otón G, Ramo R, Lizundia-Loiola J, Chuvieco E. 2019. Global detection of long-term (1982–2017) burned area with AVHRR-LTDR data. Remote Sensing. 11(18):2079.
  • Parisien MA, Moritz MA. 2009. Environmental controls on the distribution of wildfire at multiple spatial scales. Ecol Monogr. 79(1):127–154.
  • Pausas JG, Keeley JE. 2019. Wildfires as an ecosystem service. Front Ecol Environ. 17(5):289–295.
  • Peng Q, Knaap GJ. 2021. Investigating the effects of service and management on multifamily rents: a multilevel linear model approach. J Hous Built Environ. 36(3):991–1009.
  • Raudenbush SW, Bryk AS. 2002. Hierarchical linear models: Applications and data analysis methods. 2nd ed. Thousand Oaks, CA: SAGE Publications.
  • Reid CE, Brauer M, Johnston FH, Jerrett M, Balmes JR, Elliott CT. 2016. Critical review of health impacts of wildfire smoke exposure. Environ Health Perspect. 124(9):1334–1343.
  • Rodrigues M, Jimenez-Ruano A, Pena-Angulo D, de la Riva J. 2018. A comprehensive spatial-temporal analysis of driving factors of human-caused wildfires in Spain using geographically weighted logistic regression. J Environ Manage. 225:177–192.
  • Rogers BM, Balch JK, Goetz SJ, Lehmann CER, Turetsky M. 2020. Focus on changing fire regimes: interactions with climate, ecosystems, and society. Environ Res Lett. 15(3):030201.
  • Ruffault J, Mouillot F. 2017. Contribution of human and biophysical factors to the spatial distribution of forest fire ignitions and large wildfires in a French Mediterranean region. Int J Wildland Fire. 26(6):498–508.
  • Senande-Rivera M, Insua-Costa D, Miguez-Macho G. 2022. Spatial and temporal expansion of global wildland fire activity in response to climate change. Nat Commun. 13(1):1208.
  • Shen H, Tao S, Chen Y, Odman MT, Zou Y, Huang Y, Chen H, Zhong Q, Zhang Y, Chen Y, et al. 2019. Global fire forecasts using both large‐scale climate indices and local meteorological parameters. Glob Biogeochem Cycles. 33(8):1129–1145.
  • Srholec M. 2010. A multilevel approach to geography of innovation. Region Stud. 44(9):1207–1220.
  • Urbieta IR, Zavala G, Bedia J, Gutierrez JM, San Miguel-Ayanz J, Camia A, Keeley JE, Moreno JM. 2015. Fire activity as a function of fire-weather seasonal severity and antecedent climate across spatial scales in southern Europe and Pacific western USA. Environ Res Lett. 10(11):114013.
  • Van Der Werf GR, Randerson JT, Giglio L, Van Leeuwen TT, Chen Y, Rogers BM, Mu M, Van Marle MJE, Morton DC, Collatz GJ, et al. 2017. Global fire emissions estimates during 1997–2016. Earth Syst Sci Data. 9(2):697–720.
  • Zambon I, Cerda A, Cudlin P, Serra P, Pili S, Salvati L. 2019. Road network and the spatial distribution of wildfires in the Valencian community (1993-2015). Agriculture-Basel. 9(5):1–15.
  • Zhang Y, Xu M, Adams J, Wang X. 2009. Can Landsat imagery detect tree line dynamics? Int J Remote Sens. 30(5):1327–1340.
  • Zhang Y, Wang Q, Wang Z, Yang Y, Li J. 2020. Impact of human activities and climate change on the grassland dynamics under different regime policies in the Mongolian Plateau. Sci Total Environ. 698:134304.
  • Zhang ZX, Feng ZQ, Zhang HY, Zhao JJ, Yu S, Du W. 2017. Spatial distribution of grassland fires at the regional scale based on the MODIS active fire products. Int J Wildland Fire. 26(3):209–218.
  • Zhang ZX, Li JJ, Yu S, Zhao JJ. 2021. Spatial accessibility of anthropogenic fire ignition sources of grassland fire in northeast China. Int J Wildland Fire. 30(10):763–775.
  • Zhao H, Zhang Z, Ying H, Chen J, Zhen S, Wang X, Shan Y. 2021. The spatial patterns of climate-fire relationships on the Mongolian Plateau. Agric For Meteorol. 308–309:108549.