1,560
Views
8
CrossRef citations to date
0
Altmetric
Research Article

A LightGBM-based landslide susceptibility model considering the uncertainty of non-landslide samples

, , ORCID Icon &
Article: 2213807 | Received 22 Mar 2023, Accepted 10 May 2023, Published online: 24 May 2023

References

  • Bentéjac C, Csörgő A, Martínez-Muñoz G. 2021. A comparative analysis of gradient boosting algorithms. Artif Intell Rev. 54(3):1937–1967.
  • Brenning A. 2012. Spatial cross-validation and bootstrap for the assessment of prediction rules in remote sensing: the R package sperrorest. 2012 IEEE International Geoscience and Remote Sensing Symposium, p. 5372–75.
  • Carrara A, Fausto G., editors. 1995. Geographical information systems in assessing natural hazards. Advances in natural and technological hazards research. Vol. 5. Dordrecht, Netherlands: Springer Netherlands.
  • Chang Z, Huang J, Huang F, Bhuyan K, Meena SR, Catani F. 2023. Uncertainty analysis of non-landslide sample selection in landslide susceptibility prediction using slope unit-based machine learning models. Gondwana Res. 117:307–320.
  • Chen W, Pourghasemi HR, Kornejady A, Zhang N. 2017. Landslide spatial modeling: introducing new ensembles of ANN, MaxEnt, and SVM machine learning techniques. Geoderma. 305:314–327.
  • Clerici A, Perego S, Tellini C, Vescovi P. 2002. A procedure for landslide susceptibility Zonation by the conditional analysis method. Geomorphology. 48(4):349–364.
  • ElShawi R, Sherif Y, Al-Mallah M, Sakr S. 2021. Interpretability in healthcare: a comparative study of local machine learning interpretability techniques. Comput Intell. 37(4):1633–1650.
  • Hong H, Ilia I, Tsangaratos P, Chen W, Xu C. 2017. A hybrid fuzzy weight of evidence method in landslide susceptibility analysis on the Wuyuan Area, China. Geomorphology. 290:1–16.
  • Hong H, Miao Y, Liu J, Zhu A-X. 2019. Exploring the effects of the design and quantity of absence data on the performance of random forest-based landslide susceptibility mapping. Catena. 176:45–64.
  • Hong H, Pourghasemi HR, Pourtaghi ZS. 2016. Landslide susceptibility assessment in lianhua county (China): a comparison between a random forest data mining technique and bivariate and multivariate statistical models. Geomorphology. 259:105–118.
  • Huan Y, Song L, Khan U, Zhang B. 2023. Stacking ensemble of machine learning methods for landslide susceptibility mapping in Zhangjiajie City, Hunan Province, China. Environ Earth Sci. 82(1):1–18.
  • Huang F, Cao Z, Jiang S-H, Zhou C, Huang J, Guo Z. 2020. Landslide susceptibility prediction based on a semi-supervised multiple-layer perceptron model. Landslides. 17(12):2919–2930.
  • Jia WJ, Wang MF, Zhou CH, Yang QH. 2021. Analysis of the spatial association of geographical detector-based landslides and environmental factors in the Southeastern Tibetan Plateau, China. PLoS One. 16(5):e0251776.
  • Kalantar B, Pradhan B, Amir Naghibi S, Motevalli A, Mansor S. 2018. Assessment of the effects of training data selection on the landslide susceptibility mapping: a comparison between support vector machine (SVM), Logistic Regression (LR) and Artificial Neural Networks (ANN). Geomat Nat Hazard Risk. 9(1):49–69.
  • Kavzoglu T, Teke A. 2022. Predictive performances of ensemble machine learning algorithms in landslide susceptibility mapping using random forest, extreme gradient boosting (XGBoost) and natural gradient boosting (NGBoost). Arab J Sci Eng. 47(6):7367–7385.
  • Klüver J. 2011. A mathematical theory of communication: meaning, information, and topology. Complexity. 16(3):10–26.
  • Kock N, Lynn G. 2012. Lateral collinearity and misleading results in variance-based SEM: an illustration and recommendations. JAIS. 13(7):546–580.
  • Li L, Lan H, Guo C, Zhang Y, Li Q, Wu Y. 2017. A modified frequency ratio method for landslide susceptibility assessment. Landslides. 14(2):727–741.
  • Liao M, Wen H, Yang L. 2022. Identifying the essential conditioning factors of landslide susceptibility models under different grid resolutions using hybrid machine learning: a case of Wushan and Wuxi Counties, China. Catena. 217:106428.
  • Lin K, Gao Y. 2022. Model interpretability of financial fraud detection by group SHAP. Exp Syst Appl. 210:118354.
  • Lin Q, Wang Y. 2018. Spatial and temporal analysis of a fatal landslide inventory in China from 1950 to 2016. Landslides. 15(12):2357–2372.
  • Liu Y, Meng Z, Zhu L, Hu D, He H. 2023. Optimizing the sample selection of machine learning models for landslide susceptibility prediction using information value models in the Dabie mountain area of Anhui, China. Sustainability. 15(3):1971.
  • Lombardo L, Mai PM. 2018. Presenting logistic regression-based landslide susceptibility results. Eng Geol. 244:14–24.
  • Luo W, Liu CC. 2018. Innovative landslide susceptibility mapping supported by geomorphon and geographical detector methods. Landslides. 15(3):465–474.
  • Ma L, Chen J, Zhou Y, Chen X. 2016. Two-step constrained nonlinear spectral mixture analysis method for mitigating the collinearity effect. IEEE Trans Geosci Remote Sens. 54(5):2873–2886.
  • Ma M, Zhao G, He B, Li Q, Dong H, Wang S, Wang Z. 2021. XGBoost-based method for flash flood risk assessment. J Hydrol. 598:126382.
  • Marton S, Lüdtke S, Bartelt C. 2022. Explanations for neural networks by neural networks. Appl Sci. 12(3):980.
  • Myronidis D, Papageorgiou C, Theophanous S. 2016. Landslide susceptibility mapping based on landslide history and Analytic Hierarchy Process (AHP). Nat Hazards. 81(1):245–263.
  • Natekin A, Knoll A. 2013. Gradient boosting machines, a tutorial. Front Neurorobot. 7:21.
  • Paryani S, Neshat A, Javadi S, Pradhan B. 2020. GIS-based comparison of the GA-LR ensemble method and statistical models at sefiedrood basin, Iran. Arab J Geosci. 13(19):1–17.
  • Reichenbach P, Rossi M, Malamud BD, Mihir M, Guzzetti F. 2018. A review of statistically-based landslide susceptibility models. Earth-Sci Rev. 180:60–91.
  • Sagi O, Rokach L. 2021. Approximating XGBoost with an interpretable decision tree. Inform Sci. 572:522–542.
  • Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. 2020. Grad-CAM: visual explanations from deep networks via gradient-based localization. Int J Comput Vis. 128(2):336–359.
  • Shao X, Ma S, Xu C, Zhou Q. 2020. Effects of sampling intensity and non-slide/slide sample ratio on the occurrence probability of coseismic landslides. Geomorphology. 363:107222.
  • Stengelin R, Grueneisen S, Tomasello M. 2018. Why should I trust you? Investigating young children’s spontaneous mistrust in potential deceivers. Cogn Dev. 48:146–154.
  • Sun D, Ding Y, Zhang J, Wen H, Wang Y, Xu J, Zhou X, Liu R. 2022. Essential insights into decision mechanism of landslide susceptibility mapping based on different machine learning models. Geocarto Int. 38:1–29.
  • Sun D, Shi S, Wen H, Xu J, Zhou X, Wu J. 2021. A hybrid optimization method of factor screening predicated on geodetector and random forest for landslide susceptibility mapping. Geomorphology. 379:107623.
  • Sun X, Liu M, Sima Z. 2020. A novel cryptocurrency price trend forecasting model based on lightGBM. Fin Res Lett. 32:101084.
  • Taalab K, Cheng T, Zhang Y. 2018. Mapping landslide susceptibility and types using random forest. Big Earth Data. 2(2):159–178.
  • Taheri S, Mammadov M. 2013. Learning the naive bayes classifier with optimization models. Int J Appl Math Comput Sci. 23(4):787–795.
  • Wang Y, Wang T. 2020. Application of improved lightGBM model in blood glucose prediction. Appl Sci. 10(9):3227.
  • Wang Y, Sun D, Wen H, Zhang H, Zhang F. 2020. Comparison of random forest model and frequency ratio model for Landslide Susceptibility Mapping (LSM) in Yunyang County (Chongqing, China). Int J Environ Res Public Health. 17(12):4206.
  • Wang Y, Wen H, Sun D, Li Y. 2021. Quantitative assessment of landslide risk based on susceptibility mapping using random forest and geodetector. Remote Sens. 13(13):2625.
  • Wang Y, Feng L, Li S, Ren F, Du Q. 2020. A hybrid model considering spatial heterogeneity for landslide susceptibility mapping in Zhejiang Province, China. Catena. 188:104425.
  • Wang Z, Brenning A. 2021. Active-learning approaches for landslide mapping using support vector machines. Remote Sens. 13(13):2588.
  • Wu Y, Ke Y, Chen Z, Liang S, Zhao H, Hong H. 2020. Application of alternating decision tree with AdaBoost and bagging ensembles for landslide susceptibility mapping. Catena. 187:104396.
  • Xiao C, Tian Y, Shi W, Guo Q, Wu L. 2010. A new method of pseudo absence data generation in landslide susceptibility mapping with a case study of Shenzhen. Sci China Technol Sci. 53(S1):75–84.
  • Yang Y, Yuan Y, Han Z, Liu G. 2022. Interpretability analysis for thermal sensation machine learning models: an exploration based on the SHAP approach. Indoor Air. 32(2):e12984.
  • Zêzere JL, Pereira S, Melo R, Oliveira SC, Garcia RAC. 2017. Mapping landslide susceptibility using data-driven methods. Sci Total Environ. 589:250–267.
  • Zhang J,Ma X,Zhang J,Sun D,Zhou X,Mi C,Wen H. 2023. Insights into geospatial heterogeneity of landslide susceptibility based on the SHAP-XGBoost model. J Environ Manage. 332:117357.
  • Zhang D, Gong Y. 2020. The comparison of lightGBM and XGBoost coupling factor analysis and prediagnosis of acute liver failure. IEEE Access. 8:220990–221003.
  • Zhang H, Yin C, Wang S, Guo B. 2022. Landslide susceptibility mapping based on landslide classification and improved convolutional neural networks. Nat Hazards. 116:1–41.
  • Zhang Y, Yan Q. 2022. Landslide susceptibility prediction based on high-trust non-landslide point selection. ISPRS Int J Geo-Inf. 11(7):398.
  • Zhou X, Wen H, Li Z, Zhang H, Zhang W. 2022. An interpretable model for the susceptibility of rainfall-induced shallow landslides based on SHAP and XGBoost. Geocarto Int. 37(26):13419–13450.
  • Zhou X, Wen H, Zhang Y, Xu J, Zhang W. 2021. Landslide susceptibility mapping using hybrid random forest with GeoDetector and RFE for factor optimization. Geosci Front. 12(5):101211.
  • Zhu AX, Miao Y, Liu J, Bai S, Zeng C, Ma T, Hong H. 2019. A similarity-based approach to sampling absence data for landslide susceptibility mapping using data-driven methods. Catena. 183:104188.