571
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of contact angle hysteresis on measuring matric suction in unsaturated sandy soil

, , , , , , & show all
Article: 2232677 | Received 12 Sep 2022, Accepted 27 Jun 2023, Published online: 11 Jul 2023

References

  • Alves RD, Gitirana G de FN, Vanapalli SK. 2020. Advances in the modeling of the soil–water characteristic curve using pore-scale analysis. Comput Geotech. 127(July):103766. doi:10.1016/j.compgeo.2020.103766.
  • Anandarajah A, Amarasinghe PM. 2012. Microstructural Investigation of Soil Suction and Hysteresis of Fine-Grained Soils. J Geotech Geoenviron Eng. 138(1):38–46. doi:10.1061/(asce)gt.1943-5606.0000555.
  • Baker R, Frydman S. 2009. Unsaturated soil mechanics. Critical Review of Physical Foundations. Eng Geol. 106(1–2):26–39. doi:10.1016/j.enggeo.2009.02.010.
  • Broesch DJ, Frechette J. 2012. From concave to convex: capillary bridges in slit pore geometry. Langmuir. 28(44):15548–15554. doi:10.1021/la302942k.
  • Chen C, Jiang Y, Sun B, Zhou H, Hallett PD. 2022. Organic manure and lime change water vapour sorption of a red soil by altering water repellency and specific surface area. Europ J Soil Sci. 73(2):13223. doi:10.1111/ejss.13223.
  • Chen H, Chen K, Yang M. 2020. A new hysteresis model of the water retention curve based on pore expansion and contraction. Comput Geotech. 121(April 2019):103482. doi:10.1016/j.compgeo.2020.103482.
  • Chen P, Lu N, Wei C. 2019. General scanning hysteresis model for soil–water retention curves. J Geotech Geoenviron Eng. 145(12):04019116. doi:10.1061/(asce)gt.1943-5606.0002184.
  • Chen Y, Zhao Y, Gao H, Zheng J. 2011. Liquid bridge force between two unequal-sized spheres or a sphere and a plane. Particuology. 9(4):374–380. doi:10.1016/j.partic.2010.11.006.
  • Czachor H, Doerr SH, Lichner L. 2010. Water retention of repellent and subcritical repellent soils: new insights from model and experimental investigations. J Hydrol. 380(1–2):104–111. doi:10.1016/j.jhydrol.2009.10.027.
  • Diamantopoulos E, Durner W. 2013. Physically-based model of soil hydraulic properties accounting for variable contact angle and its effect on hysteresis. Adv Water Resour. 59:169–180. doi:10.1016/j.advwatres.2013.06.005.
  • Diehl D. 2013. Soil water repellency: dynamics of heterogeneous surfaces. Colloids Surf A Physicochem Eng Asp. 432:8–18. doi:10.1016/j.colsurfa.2013.05.011.
  • Dupont JB, Legendre D. 2010. Numerical simulation of static and sliding drop with contact angle hysteresis. J Comput Phys. 229(7):2453–2478. doi:10.1016/j.jcp.2009.07.034.
  • Fernandez-Toledano JC, Blake TD, Lambert P, De Coninck J. 2017. On the cohesion of fluids and their adhesion to solids: young’s equation at the atomic scale. Adv Colloid Interface Sci. 245(2016):102–107. doi:10.1016/j.cis.2017.03.006.
  • Hartmann M, Hardt S. 2019. Stability of Evaporating Droplets on Chemically Patterned Surfaces. Langmuir. 35(14):4868–4875. doi:10.1021/acs.langmuir.9b00172.
  • Huhtamaki T, Tian XL, Korhonen JT, Ras RHA. 2018. Surface-wetting characterization using contact-angle measurements. Nat Protoc. 13(7):1521–1538. doi:10.1038/s41596-018-0003-z.
  • Hunyh T, Muradoglu M, Liew OW, Ng TW. 2013. Contact angle and volume retention effects from capillary bridge evaporation in biochemical microplating. Colloids Surf A Physicochem Eng Asp. 436:647–655. doi:10.1016/j.colsurfa.2013.07.040.
  • Jiang H, Jiang Y, Zhu X, Wang Y. 2020. Investigation of aluminate coupling agent as modifier and its application on improving flame retardant of intumescent flame retardant coatings. Macromol Res. 28(S1):1211–1219. doi:10.1007/s13233-020-8165-2.
  • Kabiri B, Norouzbeigi R, Velayi E. 2022. Efficient oil/water separation using grass-like nano-cobalt oxide bioinspired dual-structured coated mesh filters. Surf Interfaces. 30:101825. doi:10.1016/j.surfin.2022.101825.
  • Leelamanie DAL, Karube J. 2009. Time dependence of contact angle and its relation to repellency persistence in hydrophobized sand. Soil Sci Plant Nutr. 55(4):457–461. doi:10.1111/j.1747-0765.2009.00387.x.
  • Leelamanie DAL, Karube J, Yoshida A. 2008. Characterizing water repellency indices: contact angle and water drop penetration time of hydrohobized sand. Soil Sci Plant Nutr. 54(2):179–187. doi:10.1111/j.1747-0765.2007.00232.x.
  • Liu Y, Li X. 2022. A hysteresis model for soil-water characteristic curve based on dynamic contact angle theory. Geomech Eng. 28(2):107–116. doi:10.12989/gae.2022.28.2.107.
  • Lowe MA, McGrath G, Leopold M. 2021. The impact of soil water repellency and slope upon runoff and erosion. Soil Tillage Res. 205(July 2020):104756. doi:10.1016/j.still.2020.104756.
  • Megias-Alguacil D, Gauckler LJ. 2010. Analysis of the capillary forces between two small solid spheres binded by a convex liquid bridge. Powder Technol. 198(2):211–218. doi:10.1016/j.powtec.2009.11.009.
  • Nazemi AH, Majnooni-Heris A. 2012. A mathematical model for the interactions between non-identical rough spheres, liquid bridge and liquid vapor. J Colloid Interface Sci. 369(1):402–410. doi:10.1016/j.jcis.2011.11.051.
  • Ng CWW, Pang YW. 2000. Influence of stress state on soil-water characteristics and slope stability. J Geotech Geoenvironmental Eng. 126(2):157–166. doi:1090-0241/00/0002-0157–0166.
  • Nguyen HNG, Millet O, Gagneux G. 2019. Liquid bridges between a sphere and a plane – Classification of meniscus profiles for unknown capillary pressure. Math Mech Solids. 24(10):3042–3060. doi:10.1177/1081286519831047.
  • Nguyen HNG, Zhao CF, Millet O, Gagneux G. 2020. An original method for measuring liquid surface tension from capillary bridges between two equal-sized spherical particles. Powder Technol. 363:349–359. doi:10.1016/j.powtec.2019.12.049.
  • Nguyen TAH, Nguyen AV, Hampton MA, Xu ZP, Huang L, Rudolph V. 2012. Theoretical and experimental analysis of droplet evaporation on solid surfaces. Chem Eng Sci. 69(1):522–529. doi:10.1016/j.ces.2011.11.009.
  • Pavlov IN, Raskovskaya IL, Tolkachev AV. 2017. Structure of the surface microrelief of a droplet evaporating from a rough substrate as a possible cause of contact angle hysteresis. J Exp Theor Phys. 124(4):570–579. doi:10.1134/S1063776117030141.
  • Pedroso DM, Williams DJ. 2010. A novel approach for modelling soil-water characteristic curves with hysteresis. Comput Geotech. 37(3):374–380. doi:10.1016/j.compgeo.2009.12.004.
  • Piyaruwan HIGS, Leelamanie DAL. 2020. Existence of water repellency and its relation to structural stability of soils in a tropical Eucalyptus plantation forest. Geoderma. 380(April):114679. doi:10.1016/j.geoderma.2020.114679.
  • Qiang-Nian L, Jia-Qi Z, Feng-Xi Z. 2017. Exact solution for capillary bridges properties by shooting method. Zeitschrift fur Naturforschung. 72(4):315–320. doi:10.1515/zna-2016-0400.
  • Ramírez-Flores JC, Bachmann J, Marmur A. 2010. Direct determination of contact angles of model soils in comparison with wettability characterization by capillary rise. J Hydrol. 382(1–4):10–19. doi:10.1016/j.jhydrol.2009.12.014.
  • Ramírez-Flores JC, Woche SK, Bachmann J, Goebel MO, Hallett PD. 2008. Comparing capillary rise contact angles of soil aggregates and homogenized soil. Geoderma. 146(1–2):336–343. doi:10.1016/j.geoderma.2008.05.032.
  • Satvati S, Alimohammadi H, Rowshanzamir M, Hejazi SM. 2020. Bearing capacity of shallow footings reinforced with braid and geogrid adjacent to soil slope. Int J of Geosynth and Ground Eng. 6(4):1–12. doi:10.1007/s40891-020-00226-x.
  • Saulick Y, Lourenço SDN, Baudet BA, Woche SK, Bachmann J. 2018. Physical properties controlling water repellency in synthesized granular solids. Eur J Soil Sci. 69(4):698–709. doi:10.1111/ejss.12555.
  • Semenov S, Trybala A, Agogo H, Kovalchuk N, Ortega F, Rubio RG, Starov VM, Velarde MG. 2013. Evaporation of droplets of surfactant solutions. Langmuir. 29(32):10028–10036. doi:10.1021/la401578v.
  • Shen Z, Jiang M, Thornton C. 2016. Shear strength of unsaturated granular soils: three-dimensional discrete element analyses. Granul Matter. 18(3):e0645-x. doi:10.1007/s10035-016-0645-x.
  • Shi Z, Gan Y. 2017. A grain-scale model for soil-water retention hysteresis. poromechanics 2017 – proceedings of the 6th biot conference on poromechanics, 457–464. doi:10.1061/9780784480779.056.
  • Song XY, Zhang Z. 2022. Determination of clay-water contact angle via molecular dynamics and deep-learning enhanced methods. Acta Geotech. 17(2):511–525. doi:10.1007/s11440-021-01238-1.
  • Song YS, Hong S. 2020. Effect of clay minerals on the suction stress of unsaturated soils. Eng Geol. 269(April 2019):105571. doi:10.1016/j.enggeo.2020.105571.
  • Toll DG, Lourenço SDN, Mendes J. 2013. Advances in suction measurements using high suction tensiometers. Eng Geol. 165:29–37. doi:10.1016/j.enggeo.2012.04.013.
  • Vogelmann ES, Reichert JM, Prevedello J, Consensa COB, Oliveira AÉ, Awe GO, Mataix-Solera J. 2013. Threshold water content beyond which hydrophobic soils become hydrophilic: the role of soil texture and organic matter content. Geoderma. 209–210:177–187. doi:10.1016/j.geoderma.2013.06.019.
  • Wang L, Yang S. 2018. Effect of soil suction test method on soil water characteristic curve. Water Saving Irrig. 276(8):5–8. doi:1007-4929(2018) 08-0005-04.
  • Wang Y, Michielsen S, Lee HJ. 2013. Symmetric and asymmetric capillary bridges between a rough surface and a parallel surface. Langmuir. 29(35):11028–11037. doi:10.1021/la401324f.
  • Whelan A, Kechavarzi C, Coulon F, Doerr SH. 2015. Experimental characterization of the impact of temperature and humidity on the breakdown of soil water repellency in sandy soils and composts. Hydrol Process. 29(8):2065–2073. doi:10.1002/hyp.10305.
  • Yang S, Gong AM, Wu JH, Lu TH. 2015. Effect of contact angle on matric suction of unsaturated soil. Rock Soil Mech. 36(3):674–678. doi:10.16285/j.rsm.2015.03.010.
  • Yang S, Lu TH. 2012. Study of soil-water characteristic curve using microscopic spherical particle model. Pedosphere. 22(1):103–111. doi:10.1016/S1002-0160(11)60196-3.
  • Yang S, Wu J, Dong H, Zhang Y. 2016. Soil water repellency of sands and clay as affected by particle size. Acta Pedologica. Sinica(2):6. doi:10.11766/trxb201506170181.
  • Yang S, Wu J, Huang J, Dong H. 2016. Effects of contact angle on suction measurement with tensiometers and axis-translation technique in unsaturated soils. Yanshilixue Yu Gongcheng Xuebao/Chin J Rock Mech Eng. 35:3331–3336. doi:10.13722/j.cnki.jrme.2015.0844.
  • Zhai Q, Rahardjo H, Satyanaga A, Dai G. 2020a. Estimation of the soil-water characteristic curve from the grain size distribution of coarse-grained soils. Eng Geol. 267:105502. doi:10.1016/j.enggeo.2020.105502.
  • Zhai Q, Rahardjo H, Satyanaga A, Dai G. 2020b. Estimation of tensile strength of sandy soil from soil–water characteristic curve. Acta Geotech. 15(12):3371–3381. doi:10.1007/s11440-020-01013-8.
  • Zhai Q, Rahardjo H, Satyanaga A, Dai G, Du Y. 2020. Estimation of the wetting scanning curves for sandy soils. Eng Geol. 272:105635. doi:10.1016/j.enggeo.2020.105635.
  • Zhai, Qian, Rahardjo, Harianto, Satyanaga, Alfrendo, Dai, Guo-liang, Priono,. 2019. Role of the pore-size distribution function on water flow in unsaturated soil. J Zhejiang Univ Sci A. 20(1):10–20. doi:10.1631/jzus.A1800347.
  • Zheng J, He H, Alimohammadi H. 2021. Three-dimensional Wadell roundness for particle angularity characterization of granular soils. Acta Geotech. 16(1):133–149. doi:10.1007/s11440-020-01004-9.
  • Zhou AN. 2013. A contact angle-dependent hysteresis model for soil-water retention behaviour. Comput Geotech. 49:36–42. doi:10.1016/j.compgeo.2012.10.004.