1,606
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Causes and effects of Shisper glacial lake outburst flood event in Karakoram in 2022

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2264460 | Received 16 Feb 2023, Accepted 23 Sep 2023, Published online: 03 Oct 2023

References

  • Amitrano D, Guida R, Di Martino G, Iodice A. 2019. Glacier monitoring using frequency domain offset tracking applied to sentinel-1 images: a product performance comparison. Remote Sensing. 11(11):1322. doi: 10.3390/rs11111322.
  • Ashraf A, Iqbal MB, Mustafa N, Naz R, Ahmad B. 2021. Prevalent risk of glacial lake outburst flood hazard in the Hindu Kush–Karakoram–Himalaya region of Pakistan. Environ Earth Sci. 80(12):1–12. doi: 10.1007/s12665-021-09740-1.
  • Ashraf A, Roohi R, Naz R, Mustafa N. 2014. Monitoring cryosphere and associated flood hazards in high mountain ranges of Pakistan using remote sensing technique. Nat Hazards. 73(2):933–949. doi: 10.1007/s11069-014-1126-3.
  • Avdan U, Jovanovska G. 2016. Algorithm for automated mapping of land surface temperature using LANDSAT 8 satellite data. J Sens. 2016:1–8. doi: 10.1155/2016/1480307.
  • Bajracharya SR, Mool PK, Shrestha BR. 2007. Impact of climate change on Himalayan glaciers and glacial lakes: case studies on GLOF and associated hazards in Nepal and Bhutan. International Centre for Integrated Mountain Development (ICIMOD).
  • Bolch T, Kulkarni A, Kääb A, Huggel C, Paul F, Cogley JG, Frey H, Kargel JS, Fujita K, Scheel M, et al. 2012. The state and fate of Himalayan glaciers. Science. 336(6079):310–314., doi: 10.1126/science.1215828.
  • Campbell JG, Pradesh H. 2005. Inventory of glaciers, glacial lakes and the identification of potential glacial lake outburst floods (GLOFs) affected by global warming in the mountains of India, Pakistan and China/Tibet Autonomous Region. International Centre for Integrated Mountain Development, GP O. Box, Asia-Pacific Network for Global Change Research (APN). p. 3226.
  • Cantalloube HM, Nouvel JF, Azarian S, Cheraly A, Roques S, Oriot H. 2016. June. Rail-borne SAR interferometry for Disaster Prevention. In Proceedings of EUSAR 2016: 11th European Conference on Synthetic Aperture Radar (pp. 1–5). VDE.
  • Chauhan PK, Kumar A, Pratap V, Chaubey SK, Singh AK. 2023. Dust storm characteristics over Indo-Gangetic basin through satellite remote sensing. In Atmospheric Remote Sensing (p. 373–392). Elsevier. doi: 10.1016/B978-0-323-99262-6.00007-9.
  • Che Y, Zhang M, Li Z, Wei Y, Nan Z, Li H, Wang S, Su B. 2019. Energy balance model of mass balance and its sensitivity to meteorological variability on Urumqi River Glacier No. 1 in the Chinese Tien Shan. Sci Rep. 9(1):13958. doi: 10.1038/s41598-019-50398-4.
  • Closson D, Milisavljevic N. 2017. InSAR Coherence and Intensity Changes Detection. Mine Action-The Research Experience of the Royal Military Academy of Belgium. Croatia: InTech.
  • Cogley JG, Kargel JS, Kaser G, van der Veen CJ. 2010. Tracking the source of glacier misinformation. Science. 327(5965):522–522. doi: 10.1126/science.327.5965.522-a.
  • Feng Y, Chen J, Huang Z, Wan H, Xia R, Wu B, Sun L, Xing M. 2022. A lightweight position-enhanced anchor-free algorithm for SAR ship detection. Remote Sensing. 14(8):1908. doi: 10.3390/rs14081908.
  • Filipponi F. 2019. Sentinel-1 GRD preprocessing workflow. In Multidisciplinary Digital Publishing Institute Proceedings. 18(1):11. (
  • Gao BC. 1996. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens Environ. 58(3):257–266. doi: 10.1016/S0034-4257(96)00067-3.
  • Gautam R, Hsu NC, Lau WKM, Yasunari TJ. 2013. Satellite observations of desert dust‐induced Himalayan snow darkening. Geophys Res Lett. 40(5):988–993. doi: 10.1002/grl.50226.
  • Hao XH, Wang J, Li HY. 2008. Evaluation of the NDSI threshold value in mapping snow cover of MODIS—A case study of snow in the Middle Qilian Mountains. J. Glaciol. Geocryol. 30(1):132–138.
  • Hewitt K, Liu J. 2010. Ice-dammed lakes and outburst floods, Karakoram Himalaya: historical perspectives on emerging threats. Physical Geography. 31(6):528–551. doi: 10.2747/0272-3646.31.6.528.
  • Hewitt K. 2005. The Karakoram anomaly? Glacier expansion and the ‘elevation effect,’Karakoram Himalaya. Mt Res Dev. 25(4):332–340. doi: 10.1659/0276-4741(2005)025[0332:TKAGEA.2.0.CO;2]
  • Hewitt K. 2009. Rock avalanches that travel onto glaciers and related developments, Karakoram Himalaya, Inner Asia. Geomorphology. 103(1):66–79. doi: 10.1016/j.geomorph.2007.10.017.
  • Immerzeel WW, Van Beek LP, Bierkens MF. 2010. Climate change will affect the Asian water towers. Science. 328(5984):1382–1385. doi: 10.1126/science.1183188.
  • Ives JD, Shrestha RB, Mool PK. 2010. Formation of glacial lakes in the Hindu Kush-Himalayas and GLOF risk assessment (p. 10–11. Kathmandu: ICIMOD.
  • Kääb A, Berthier E, Nuth C, Gardelle J, Arnaud Y. 2012. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature. 488(7412):495–498. doi: 10.1038/nature11324.
  • Kääb A, Treichler D, Nuth C, Berthier E. 2015. Brief Communication: contending estimates of 2003–2008 glacier mass balance over the Pamir–Karakoram–Himalaya. The Cryosphere. 9(2):557–564. doi: 10.5194/tc-9-557-2015.
  • Khan G, Ali S, Xiangke X, Qureshi JA, Ali M, Karim I. 2021. Expansion of Shishper Glacier lake and recent glacier lake outburst flood (GLOF), Gilgit-Baltistan, Pakistan. Environ Sci Pollut Res Int. 28(16):20290–20298. doi: 10.1007/s11356-020-11929-z.
  • Kulkarni AV. 1992. Mass balance of Himalayan glaciers using AAR and ELA methods. J Glaciol. 38(128):101–104. doi: 10.3189/S0022143000009631.
  • Kumar R, Bahuguna IM, Ali SN, Singh R. 2020. Lake inventory and evolution of glacial lakes in the Nubra-Shyok basin of Karakoram Range. Earth Syst Environ. 4(1):57–70. doi: 10.1007/s41748-019-00129-6.
  • Lichtenegger J, Gurung DR, Mool PK, Bigot J. 2008. June. Near real-time monitoring of glacial lake Imja (Khumbu-Everest region). In Proceeding of the ESA Living Planet Symposium, Bergen, Norway (Vol. 28).
  • Mao W, Wu L, Singh RP, Qi Y, Xie B, Liu Y, Ding Y, Zhou Z, Li J. 2022. Progressive destabilization and triggering mechanism analysis using multiple data for Chamoli rockslide of 7 February 2021. Geomatics Nat Hazards Risk. 13(1):35–53. doi: 10.1080/19475705.2021.2013960.
  • McFeeters SK. 1996. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int J Remote Sens. 17(7):1425–1432. doi: 10.1080/01431169608948714.
  • Meena SR, Bhuyan K, Chauhan A, Singh RP. 2021a. Changes in the flood plains and water quality along the Himalayan rivers after the Chamoli disaster of 7 February 2021. Int J Remote Sens. 42(18):6984–7001. doi: 10.1080/01431161.2021.1944696.
  • Meena SR, Chauhan A, Bhuyan K, Singh RP. 2021b. Chamoli disaster: pronounced changes in water quality and flood plains using Sentinel data. Environ Earth Sci. 80(17):601. doi: 10.1007/s12665-021-09904-z.
  • Meena S, Bhuyan K, Chauhan AK, Singh RP. 2021c. Snow covered with dust after Chamoli rockslide: inference based on high-resolution satellite data. Remote Sensing Letters. 12Issue(7)Page:704–714. volume doi: 10.1080/2150704X.2021.1931532.
  • Mishra S, Mishra DR. 2012. Normalized difference chlorophyll index: a novel model for remote estimation of chlorophyll-a concentration in turbid productive waters. Remote Sens Environ. 117:394–406. doi: 10.1016/j.rse.2011.10.016.
  • Mondal SK, Bharti R. 2021b. July. Smoulder Detection Using Split-Window Algorithm: a Case Study from Baghjan Oilfield, Assam, India. In 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS (p. 8590–8593). IEEE. doi: 10.1109/IGARSS47720.2021.9554837
  • Mondal SK, Bharti R, Kumar S. 2023. Spatio-temporal Variations in Oxygen and Deuterium Isotope of Different Water Sources in Sikkim Himalayas: an Understanding Towards Regional Scale Basin Hydrology. J Hydrol. 621:129613. doi: 10.1016/j.jhydrol.2023.129613.
  • Mondal SK, Bharti R. 2022a. Glacial burst triggered by triangular wedge collapse: a study from Trisul Mountain near Ronti glacier valley. Geomatics Nat Hazards Risk. 13(1):830–853. doi: 10.1080/19475705.2022.2042402.
  • Mondal SK, Bharti R. 2022a. July. Seismic Impact Around Himalayan Snow-Melt Fed Lake Using InSAR: a Case Study for 20 March 2020 MW5. 7 Tibet Earthquake. In IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium (p. 2522–2525. IEEE.
  • Mool PK, Bajracharya SR, Shrestha BR. 2005a. Inventory of Glaciers and Glacial Lakes and the Identification of Potential Glacial Lake Outburst Floods (GLOFs) Affected by Global Warming in the Mountains of India, Pakistan and China/Tibet Autonomous Region (APN 2004-03-CMY–Campbell). In APN Newsletter. 11(4):6–7.
  • Muhammad S, Li J, Steiner JF, Shrestha F, Shah GM, Berthier E, Guo L, Wu LX, Tian L. 2021. A holistic view of Shisper Glacier surge and outburst floods: from physical processes to downstream impacts. Geomatics Nat Hazards Risk. 12(1):2755–2775. doi: 10.1080/19475705.2021.1975833.
  • Nie Y, Liu Q, Liu S. 2013. Glacial lake expansion in the Central Himalayas by Landsat images, 1990–2010. PLoS One. 8(12):e83973. doi: 10.1371/journal.pone.0083973.
  • Nolin AW, Liang S. 2000. Progress in bidirectional reflectance modeling and applications for surface particulate media: snow and soils. Remote Sensing Reviews. 18(2-4):307–342. doi: 10.1080/02757250009532394.
  • Nüsser M, Dame J, Parveen S, Kraus B, Baghel R, Schmidt S. 2019. Cryosphere-fed irrigation networks in the northwestern Himalaya: precarious livelihoods and adaptation strategies under the impact of climate change. Mt Res Dev. 39(2):R1–R11. doi: 10.1659/MRD-JOURNAL-D-18-00072.1.
  • Nüsser M, Schmidt S. 2021. Glacier changes on the Nanga Parbat 1856–2020: A multi-source retrospective analysis. Sci Total Environ. 785:147321. doi: 10.1016/j.scitotenv.2021.147321.
  • Pandey VK, Kumar R, Singh R, Kumar R, Rai SC, Singh RP, Tripathi AK, Soni VK, Ali SN, Tamang D, et al. 2022. Catastrophic ice-debris flow in the Rishiganga River, Chamoli, Uttarakhand (India). Geomatics Nat Hazards Risk. 13(1):289–309. doi: 10.1080/19475705.2021.2023661.
  • Parveen S, Winiger M, Schmidt S, Nüsser M. 2015. Irrigation in Upper Hunza: evolution of socio-hydrological interactions in the Karakoram, northern Pakistan. Erdkunde. 69(1):69–85. doi: 10.3112/erdkunde.2015.01.05.
  • Patel P, Mondal SK, Bharti R. 2019. July. Snow Area Mapping using Feature-oriented Principal Component Analysis. In IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium (p. 4088–4090. IEEE.
  • Perrou T, Garioud A, Parcharidis I. 2018. Use of Sentinel-1 imagery for flood management in a reservoir-regulated river basin. Front Earth Sci. 12(3):506–520. doi: 10.1007/s11707-018-0711-2.
  • Pfeffer WT, Arendt AA, Bliss A, Bolch T, Cogley JG, Gardner AS, Hagen J-O, Hock R, Kaser G, Kienholz C, et al. 2014. The Randolph Glacier Inventory: a globally complete inventory of glaciers. J Glaciol. 60(221):537–552., doi: 10.3189/2014JoG13J176.
  • Prasad AK, Singh RP. 2007a. Changes in aerosol parameters during major dust storm events (2001–2005) over the Indo‐Gangetic Plains using AERONET and MODIS data. J Geophys Res. 112(D9):D09208. doi: 10.1029/2006JD007778.
  • Prasad AK, Singh RP. 2007b. Changes in Himalayan snow and glacier cover between 1972 and 2000. EoS Transactions. 88(33):326–326. doi: 10.1029/2007EO330002.
  • Pritchard HD. 2017. Asia’s glaciers are a regionally important buffer against drought. Nature. 545(7653):169–174. doi: 10.1038/nature22062.
  • Qin D, Ding Y, Xiao C, Kang S, Ren J, Yang J, Zhang S. 2018. Cryospheric science: research framework and disciplinary system. National Science Review. 5(2):255–268. doi: 10.1093/nsr/nwx108.
  • Qu JJ, Hao X, Kafatos M, Wang L. 2006. Asian dust storm monitoring combining Terra and Aqua MODIS SRB measurements. IEEE Geosci Remote Sensing Lett. 3(4):484–486. doi: 10.1109/LGRS.2006.877752.
  • Reynolds JM. 1992. The identification and mitigation of glacier-related hazards: examples from the Cordillera Blanca, Peru. In Geohazards (p. 143–157. Springer, Dordrecht.
  • Riaz S, Ali A, Baig MN. 2014. Increasing risk of glacial lake outburst floods as a consequence of climate change in the Himalayan region. Jàmbá: journal of Disaster Risk Studies. 6(1):1–7. doi: 10.4102/jamba.v6i1.110.
  • Richardson SD, Reynolds JM. 2000. An overview of glacial hazards in the Himalayas. Quat Int. 65-66:31–47. doi: 10.1016/S1040-6182(99)00035-X.
  • Ritchie JC, Zimba PV, Everitt JH. 2003. Remote sensing techniques to assess water quality. Photogramm Eng Remote Sensing. 69(6):695–704. doi: 10.14358/PERS.69.6.695.
  • Salomonson VV, Appel I. 2004. Estimating fractional snow cover from MODIS using the normalized difference snow index. Remote Sens Environ. 89(3):351–360. doi: 10.1016/j.rse.2003.10.016.
  • Schmidt S, Nüsser M, Baghel R, Dame J. 2020. Cryosphere hazards in Ladakh: the 2014 Gya glacial lake outburst flood and its implications for risk assessment. Nat Hazards. 104(3):2071–2095. doi: 10.1007/s11069-020-04262-8.
  • Shugar DH, Jacquemart M, Shean D, Bhushan S, Upadhyay K, Sattar A, Schwanghart W, McBride S, de Vries MVW, Mergili M, et al. 2021. A massive rock and ice avalanche caused the 2021 disaster at Chamoli, Indian Himalaya. Science. 373(6552):300–306., doi: 10.1126/science.abh4455.
  • Singh C, Chauhan N, Upadhyay SK, Singh R, Rani A. 2021. The Himalayan natural resources: challenges and conservation for sustainable development. Journal of Pharmacognosy and Phytochemistry. 10(1):1643–1648.
  • Solovey T. 2019. An analysis of flooding coverage using remote sensing within the context of risk assessment. Geologos. 25(3):241–248. doi: 10.2478/logos-2019-0026.
  • Stathopoulou M, Cartalis C, Petrakis M. 2007. Integrating Corine Land Cover data and Landsat TM for surface emissivity definition: application to the urban area of Athens, Greece. Int J Remote Sens. 28(15):3291–3304. doi: 10.1080/01431160600993421.
  • USEPA. 2008. “National Coastal Condition Report III,” p. 329. Office of Research and Development/Office of Water. United StatesEnvironmental Protection Agency. EPA/842-R-08-002, Washington, DC 20460.
  • Usgs (u S. 2013. Geological Survey).2013. Earthexplorer.Available: http://earthexplorer.usgs.gov/. [accessed 27 May ].
  • Wang W, Xiang Y, Gao Y, Lu A, Yao T. 2015. Rapid expansion of glacial lakes caused by climate and glacier retreat in the Central Himalayas. Hydrol Process. 29(6):859–874. doi: 10.1002/hyp.10199.
  • Wangchuk S, Bolch T, Zawadzki J. 2019. Towards automated mapping and monitoring of potentially dangerous glacial lakes in Bhutan Himalaya using Sentinel-1 Synthetic Aperture Radar data. Int J Remote Sens. 40(12):4642–4667. doi: 10.1080/01431161.2019.1569789.
  • Watanabe T, Ives JD, Hammond JE. 1994. Rapid growth of a glacial lake in Khumbu Himal, Himalaya: prospects for a catastrophic flood. Mt Res Dev. 14(4):329–340. doi: 10.2307/3673729.
  • Wester P, Mishra A, Mukherji A, Shrestha AB. 2019. The Hindu Kush Himalaya assessment: mountains, climate change, sustainability and people (p. 627). Springer Nature. doi: 10.1007/978-3-319-92288-1
  • Winiger M, Gumpert M, Yamout H. 2005. Karakorum–Hindukush–western Himalaya: assessing high‐altitude water resources. Hydrological Processes: An International Journal. 19(12):2329–2338. doi: 10.1002/hyp.5887.
  • Winther JG. 1993. Short-and Long-Term Variability of Snow Albedo: paper presented at the 9th Northern Res. Basin Symposium/Workshop (Whitehorse/Dawson/Inuvik, Canada-August 1992). Hydrology Research. 24(2-3):199–212. doi: 10.2166/nh.1993.0022.
  • Zhang M, Chen F, Tian B, Liang D, Yang A. 2020. Characterization of Kyagar Glacier and lake outburst floods in 2018 based on time-series Sentinel-1A data. Water. 12(1):184. doi: 10.3390/w12010184.
  • Zhao Y, Zhao J, Yue X, Wang Y. 2020. Comparison of remote sensing extraction methods for glacier firn line-considering Urumqi Glacier No. 1 as the experimental area. In E3S Web of Conferences (Vol. 218, p. 04024). EDP Sciences.