963
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Dynamic association of slope movements in the Uttarakhand Himalaya: a critical review on the landslide susceptibility assessment

ORCID Icon, ORCID Icon &
Article: 2273214 | Received 19 May 2023, Accepted 16 Oct 2023, Published online: 09 Nov 2023

References

  • Ada M, San BT. 2018. Comparison of machine-learning techniques for landslide susceptibility mapping using two-level random sampling (2LRS) in Alakir catchment area, Antalya, Turkey. Nat Hazards. 90(1):237–263. doi: 10.1007/s11069-017-3043-8.
  • Aghdam N, Varzandeh MHM, Pradhan B. 2016. Landslide susceptibility mapping using an ensemble statistical index (Wi) and adaptive neuro-fuzzy inference system (ANFIS) model at Alborz Mountains (Iran). Environ Earth Sci. 75(7):1–20.
  • Akgun A, Dag S, Bulut F. 2008. Landslide susceptibility mapping for a landslide-prone area (Findikli, NE of Turkey) by likelihood-frequency ratio and weighted linear combination models. Environ Geol. 54(6):1127–1143. doi: 10.1007/s00254-007-0882-8.
  • Akgün A, Türk N. 2011. Mapping erosion susceptibility by a multivariate statistical method: a case study from the Ayvalık region, NW Turkey. Comput Geosci. 37(9):1515–1524. doi: 10.1016/j.cageo.2010.09.006.
  • Akgun A. 2012. A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: a case study at Izmir, Turkey. Landslides. 9(1):93–106. doi: 10.1007/s10346-011-0283-7.
  • Allen S, Huggel C. 2013. Extremely warm temperatures as a potential cause of recent high mountain rock fall. Global Planet Change. 107:59–69. doi: 10.1016/j.gloplacha.2013.04.007.
  • Allen SA. 1984. Types of land subsidence. In: Poland JF, editor. Guidebook to studies of land subsidence due to ground-water withdrawal. Paris: United Nations Educational Scientific and Cultural Organization; p. 291–305.
  • Althuwaynee OF, Pradhan B, Mahmud AR, Yusoff ZM. 2012. Prediction of slope failures using bivariate statistical based index of entropy model. IEEE Colloquium on Humanities, Science and Engineering (CHUSER). doi: 10.1109/chuser.2012.6504340.
  • Althuwaynee OF, Pradhan B, Park HJ, Lee JH. 2014a. A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mapping. Catena. 114:21–36. doi: 10.1016/j.catena.2013.10.011.
  • Althuwaynee OF, Pradhan B, Park HJ, Lee JH. 2014b. A novel ensemble decision tree based CHi-squared Automatic Interaction Detection (CHAID) and multivariate logistic regression models in landslide susceptibility mapping. Landslides. 11(6):1063–1078. doi: 10.1007/s10346-014-0466-0.
  • Arora MK, Das Gupta AS, Gupta RP. 2004. An artificial neural network approach for landslide hazard zonation in the Bhagirathi (Ganga) valley, Himalayas. Int J Remote Sens. 25(3):559–572., doi: 10.1080/0143116031000156819.
  • Auden JB. 1935. Traverses in the Himalaya. Rec Geol Surv Ind. 69:123–167.
  • Ayalew L, Yamagishi H, Ugawa N. 2004. Landslide susceptibility mapping using GIS based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan. Landslides. 1(1):73–81. doi: 10.1007/s10346-003-0006-9.
  • Bai X, Jian J, He S, Liu W. 2019. Dynamic process of the massive Xinmo landslide, Sichuan (China), from joint seismic signal and morphodynamic analysis. Bull Eng Geol Environ. 78(5):3269–3279. doi: 10.1007/s10064-018-1360-0.
  • Barnard PL, Owen LA, Sharma MC, Finkel RC. 2001. Natural and human-induced landsliding in the Garhwal Himalaya of Northern India. Geomorphology. 40(1–2):21–35. doi: 10.1016/S0169-555X(01)00035-6.
  • Batar AK, Watanabe T. 2021. Landslide susceptibility mapping and assessment using geospatial platforms and weights of evidence (WoE) method in the Indian Himalayan Region: recent developments, gaps, and future directions. ISPRS Int J Geo-Inf. 10(3):114. doi: 10.3390/ijgi10030114.
  • Bhargavi P, Jyothi S. 2009. Applying naive bayes data mining technique for classification of agricultural land soils.
  • Bhattacharyya P, DasGupta S, Das S, Paul S. 2020. Landslide susceptibility analysis: a case study of Nainital municipal area. 23 November, Preprint (Version 1) available at Research Square. doi: 10.21203/rs.3.rs-106891/v1.
  • Binh Thai P, Dieu TB, Indra P. 2017. Application of classification and regression trees for spatial prediction of rainfall induced shallow landslides in the Uttarakhand Area (India) using GIS. In: Climate change, extreme events and disaster risk reduction. Berlin, Heidelberg: Springer; p. 159–170.
  • Birkinshaw SJ, James P, Ewen J. 2010. Graphical user interface for rapid setup of SHETRAN physically-based river catchment model. Environ Modell Softw. 25(4):609–610. doi: 10.1016/j.envsoft.2009.11.011.
  • Brenning A. 2005. Spatial prediction models for landslide hazards: review, comparison and evaluation. Nat Hazards Earth Syst Sci. 5(6):853–862. doi: 10.5194/nhess-5-853-2005.
  • Brenning A. 2008. Statistical geocomputing combining R and SAGA: the example of landslide susceptibility analysis with generalized additive models. In: Böhner J, Blaschke T, Montanarella L, Böhner J, editors. SAGA—seconds out. Hamburger Beiträge zur Physischen Geographie und Landschafts Ökologie. Vol. 19. Universität Hamburg, Institut für Geographie; p. 23–32, 410.
  • Bui DT, Pradhan B, Lofman O, Revhaug I, Dick OB. 2012. Landslide susceptibility mapping at HoaBinh province (Vietnam) using an adaptive neuro-fuzzy inference system and GIS. Comput Geosci. 45:199–211. doi: 10.1016/j.cageo.2011.10.031.
  • Calvello M, Cascini L, Mastroianni S. 2013. Landslide zoning over large areas from a sample inventory by means of scale-dependent terrain units. Geomorphology. 182:33–48. doi: 10.1016/j.geomorph.2012.10.026.
  • Campbell RH. 1975. Soil slips, debris flows, and rainstorms in the Santa Monica mountains and vicinity, Southern California. U.S. Geological Survey Professional Paper 851; p. 51.
  • Carrara A, Cardinali M, Detti R, Guzzetti F, Pasqui V, Reichenbach P. 1991. GIS techniques and statistical models in evaluating landslide hazard. Earth Surf Process Landforms. 16(5):427–445. doi: 10.1002/esp.3290160505.
  • Champati Ray PK, Dimri S, Lakhera RC, Sati S. 2007. Fuzzy-based method for landslide hazard assessment in active seismic zone of Himalaya. Landslides. 4(2):101–111. doi: 10.1007/s10346-006-0068-6.
  • Chang KT, Merghadi A, Yunus AP, Pham BT, Dou J. 2019. Evaluating scale effects of topographic variables in landslide susceptibility models using GIS-based machine learning techniques. Sci Rep. 9(1):12296. doi: 10.1038/s41598-019-48773-2.
  • Chang M, Tang C, Xia C, Fang Q. 2016. Spatial distribution analysis of landslides triggered by the 2013-04-20 Lushan earthquake, China. Earthq Eng Eng Vib. 15(1):163–171. doi: 10.1007/s11803-016-0313-5.
  • Chauhan S, Sharma M, Arora MK, Gupta NK. 2010. Landslide susceptibility zonation through ratings derived from artificial neural network. Int J Appl Earth Obs Geoinf. 12(5):340–350. doi: 10.1016/j.jag.2010.04.006.
  • Chen T, Niu R, Jia X. 2016. A comparison of information value and logistic regression models in landslide susceptibility mapping by using GIS. Environ Earth Sci. 75(10):1–16. doi: 10.1007/s12665-016-5317-y.
  • Chen W, Peng J, Hong H, Shahabi H, Pradhan B, Liu J, Zhu A-X, Pei X, Duan Z. 2018. Duan landslide susceptibility modelling using GIS-based machine learning techniques for Chongren County, Jiangxi Province, China. Sci Total Environ. 626:1121–1135. doi: 10.1016/j.scitotenv.2018.01.124.
  • Chen W, Shahabi H, Shirzadi A, Hong H, Akgun A, Tian Y, Liu J, Zhu AX, Li S. 2019. Novel hybrid artificial intelligence approach of bivariate statistical-methods-based kernelogistic regression classifier for landslide susceptibility modeling. Bull Eng Geol Environ. 78(6):4397–4419. doi: 10.1007/s10064-018-1401-8.
  • Chen W, Shirzadi A, Shahabi H, Ahmad BB, Zhang S, Hong H, Zhang N. 2017. A novel hybrid artificial intelligence approach based on the rotation forest ensemble and naïve Bayes tree classifiers for a landslide susceptibility assessment in Langao County, China. Geomatics Nat Hazards Risk. 8(2):1955–1977. doi: 10.1080/19475705.2017.1401560.
  • Choi J, Lee YK, Lee M, Kim K, Park Y, Kim S, Goo S, Cho M, Sim J, Won JS. 2011. Landslide susceptibility mapping by using an adaptive neuro-fuzzy inference system (ANFIS). IEEE International Geoscience and Remote Sensing Symposium. New York (NY): IEEE; p. 1989–1992.
  • Chung CJF, Fabbri AG. 2003. Validation of spatial prediction models for landslide hazard mapping. Nat Hazards. 30(3):451–472. doi: 10.1023/B:NHAZ.0000007172.62651.2b.
  • Ciampalini A, Raspini F, Lagomarsino D, Catani F, Casagli, N, 2016. Landslide susceptibility map refinement using PSInSAR data. Rem Sens Environ. 184:302–315. doi: 10.1016/j.rse.2016.07.018.
  • Conoscenti C, Ciaccio M, Caraballo-Arias NA, Gomez-Gutierrez A, Rotigliano E, Agnesi V. 2015. Assessment of susceptibility to earth-flow landslide using logistic regression and multivariate adaptive regression splines: a case of the Belice River basin (western Sicily, Italy). Geomorphology. 242:49–64. doi: 10.1016/j.geomorph.2014.09.020.
  • [C3S] Copernicus Climate Change Service. 2017. ERA5: fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store (CDS). (date of access). https://cds.climate.copernicus.eu/cdsapp#!/home.
  • Corominas J, van Westen C, Frattini P, Cascini L, Malet J-P, Fotopoulou S, Catani F, Van Den Eeckhaut M, Mavrouli O, Agliardi F, et al. 2013. Recommendations for the quantitative analysis of landslide risk. Bull Eng Geol Environ. 73(2):209–263. doi: 10.1007/s10064-013-0538-8.
  • Crozier MJ. 1986. Landslides: causes, consequences & environment. London: Croom Helm Publication.
  • Crozier MJ. 2010. Deciphering the effect of climate change on landslide activity: a review. Geomorphology. 124(3–4):260–267. doi: 10.1016/j.geomorph.2010.04.009.
  • Das SR, Ganguli P. 2022. Predictability of rainfall induced-landslides: the case study of Western Himalayan Region. EGU Sphere :1–32. doi: 10.5194/egusphere-2022-243.
  • Devkota KC, Regmi AD, Pourghasemi HR, Yoshida K, Pradhan B, Ryu IC, Dhital MR, Althuwaynee OF. 2013. Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya. Nat Hazards. 65(1):135–165. doi: 10.1007/s11069-012-0347-6.
  • Devoli G, Strauch W, Chávez G, Høeg K. 2007. A landslide database for Nicaragua: a tool for landslide-hazard management. Landslides. 4(2):163–176., doi: 10.1007/s10346-006-0074-8.
  • Dewey JF, Burke K. 1973. Tibetan, Variscan and Precambrian basement reactivation: products of continental collision. J Geol. 81(6):683–692. doi: 10.1086/627920.
  • Dickson ME, Perry GLW. 2016. Perry identifying the controls on coastal cliff landslides using machine-learning approaches. Environ Model Softw. 76:117–127. doi: 10.1016/j.envsoft.2015.10.029.
  • Dikshit A, Sarkar R, Pradhan B, Segoni S, Alamri AM. 2020. Rainfall induced landslide studies in Indian Himalayan region: a critical review. Appl Sci. 10(7):2466. doi: 10.3390/app10072466.
  • Dikshit A, Satyam N. 2017. Rainfall thresholds for the prediction of landslides using empirical methods in Kalimpong, Darjeeling, India. Workshop on Advances in Landslide Understanding, JTC1; Barcelona; p. 255–259.
  • Dimri AP, Chevuturi A, Niyogi D, Thayyen RJ, Ray K, Tripathi SN, Pandey AK, Mohanty UC. 2017. Cloudbursts in Indian Himalayas: a review. Earth Sci Rev. 168:1–23. volumedoi: 10.1016/j.earscirev.2017.03.006.
  • Ding Q, Chen W, Hong H. 2016. Application of frequency ratio, weights of evidence and evidential belief function models in landslide susceptibility mapping. Geocarto Int. 32:6, 619–639. doi: 10.1080/10106049.2016.1165294.
  • Ellen SD, Mark RK, Cannon SH, Knifong DL. 1993. Map of debris-flow hazard in the Honolulu District of Oahu, Hawaii. U.S. Geological Survey Open-File Report 93-2 13, 25 pp. Entropy. 20(11):884.
  • Ellen SD, Wieczorek GF, Brown WM III, Herd DG. 1988. Introduction. In: Ellen SD, Wieczorek GF, editors. Landslides, floods, and marine effects of the storm of January 3–5, 1982, in the San Francisco Bay Region, California—Introduction, U.S. Geological Survey Professional Paper 1434; p. 1–5.
  • Ermini L, Casagli N. 2003. Prediction of the behavior of landslide dams using a geomorphological dimensionless index. Earth Surf Process Landforms. 28(1):31–47. doi: 10.1002/esp.424.
  • Ewen J, Parkin G, O’Connell P. 2000. SHETRAN: distributed river basin flow and transport modeling system. J Hydrol Eng. 5(3):250–258. doi: 10.1061/(ASCE)1084-0699(2000)5:3(250).
  • Fan W, Wei XS, Cao YB, Zheng B. 2017. Landslide susceptibility assessment using the certainty factor and analytic hierarchy process. J Mt Sci. 14(5):906–925. doi: 10.1007/s11629-016-4068-2.
  • Fan X, Scaringi G, Korup O, West AJ, van Westen CJ, Tanyas H, Hovius N, Hales TC, Jibson RW, Allstadt KE, et al. 2019. Earthquake‐induced chains of geologic hazards: patterns, mechanisms, and impacts. Rev Geophys. 57(2):421–503. doi: 10.1029/2018RG000626.
  • Feizizadeh B,Blaschke T. 2012. Comparing GIS-multicriteria decision analysis for landslide susceptibility mapping for the lake basin, Iran. 2012 IEEE International Geoscience and Remote Sensing Symposium. doi: 10.1109/igarss.2012.6352388.
  • Feizizadeh B, Blaschke T, Nazmfar H. 2014. GIS-based ordered weighted averaging and Dempster–Shafer methods for landslide susceptibility mapping in the Urmia Lake Basin, Iran. Int J Digit Earth. 7(8):688–708. doi: 10.1080/17538947.2012.749950.
  • Feizizadeh B. 2013. Integrating GIS based fuzzy set theory in multicriteria evaluation methods for landslide susceptibility mapping. Int J Geoinformatics. 9:49–57.
  • Feizizadeh B, Blaschke T, Nazmfar H, Rezaei Moghaddam M. 2013. Landslide susceptibility mapping for the Urmia Lake basin, Iran: a multi-criteria evaluation approach using GIS. Int J Environ Res. 7(2):319–336. doi: 10.22059/ijer.2013.610.
  • Felicísimo A, Cuartero A, Remondo J, Quirós E. 2013. Mapping landslide susceptibility with logistic regression, multiple adaptive regression splines, classification and regression trees, and maximum entropy methods: a comparative study. Landslides. 10(2):175–189. doi: 10.1007/s10346-012-0320-1.
  • Fischer L, Huggel C, Kääb A, Haeberli W. 2013. Slope failures and erosion rates on a glacierized high‐mountain face under climatic changes. Earth Surf Process Landforms. 38(8):836–846. doi: 10.1002/esp.3355.
  • García-Rodríguez MJ, Malpica JA, Benito B, Díaz M. 2008. Susceptibility assessment of earthquake triggered landslides in El Salvador using logistic regression. Geomorphology. 95(3–4):172–191. doi: 10.1016/j.geomorph.2007.06.001.
  • Goetz JN, Brenning A, Petschko H, Leopold P. 2015. Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling. Comput Geosci. 81:1–11. doi: 10.1016/j.cageo.2015.04.007.
  • Goetz JN, Cabrera R, Brenning A, Heiss G, Leopold P. 2015. Modelling landslide susceptibility for a large geographical area using weights of evidence in lower Austria, Austria. In: Engineering geology for society and territory. Vol. 2. Cham, Switzerland: Springer International Publishing; p. 927–930. doi: 10.1007/978-3-319-09057-3_160.
  • Goetz JN, Guthrie RH, Brenning A. 2011. Integrating physical and empirical landslide susceptibility models using generalized additive models. Geomorphology. 129(3–4):376–386. doi: 10.1016/j.geomorph.2011.03.001.
  • Gruber S, Hoelzle M, Haeberli W. 2004. Permafrost thaw and destabilization of Alpine rock walls in the hot summer of 2003. Geophys Res Lett. 31(13):L13504. doi: 10.1029/2004GL020051.
  • GSI and NRSC. 2012. National geomorphological and Lineament mapping on 1:50,000 scale, Natural Resources Census Project. Hyderabad: National Remote Sensing Centre, ISRO.
  • GSI. 2021. Geological map, Geological Survey of India. Government of India, Kolkata, India. Geologists. 27(1):73–78.
  • Guettouche MS. 2013. Modeling and risk assessment of landslides using fuzzy logic. Application on the slopes of the Algerian Tell (Algeria). Arab J Geosci. 6(9):3163–3173. doi: 10.1007/s12517-012-0607-5.
  • Gupta K, Satyam N. 2022. Seismically induced Landslide hazard assessment based on the spatial distribution of the slope strength demand in the Western Himalayas. EGU General Assembly; May; Vienna, Austria, EGU22-7328; p. 23–27. doi: 10.5194/egusphere-egu22-7328.
  • Guzzetti F,Mondini AC,Cardinali M,Fiorucci F,Santangelo M,Chang KT. 2012. Landslide inventory maps: new tools for an old problem. Earth-Science Reviews 112(1-2):42–66. doi: 10.1016/j.earscirev.2012.02.001. ISSN 0012–8252.
  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P. 1999. Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, central Italy. Geomorphology. 31(1–4):181–216. doi: 10.1016/S0169-555X(99)00078-1.
  • Guzzetti F, Reichenbach P, Ardizzone F, Cardinali M, Galli M. 2006. Estimating the quality of landslide susceptibility models. Geomorphology. 81(1–2):166–184. doi: 10.1016/j.geomorph.2006.04.007.
  • Guzzetti F. 2002. Landslide hazard assessment and risk evaluation: limits and prospectives. Proceedings of the 4th EGS Plinius Conference; Mallorca, Spain; p. 2–4.
  • Hammond C, Hall D, Miller S, Swetick P. 1992. Level I Stability Analysis (LISA) Documentationfor Version 2.0. General Technical Report INT-285, U. S. Dept. of Agriculture, Forest Service, Intermountain Research Station, Moscow, ID; p. 130.
  • Heim A, Gansser A. 1939. Central Himalaya geological observations of Swiss.
  • Holland TH. 1908. On the occurrence of striated boulders in the Blaini Formation of Simla with a discussion on the geological age of the beds. Rec Geol Surv India. 81:129–185.
  • Hong H, Liu J, Bui DT, Pradhan B, Acharya TD, Pham BT, Zhu AX, Chen W, Ahmad BB. 2018. Landslide susceptibility mapping using J48 Decision Tree with AdaBoost, Bagging and Rotation Forest ensembles in the Guangchang area (China). Catena. 163:399–413. doi: 10.1016/j.catena.2018.01.005.
  • Huggel C, Salzmann N, Allen S, Caplan-Auerbach J, Fischer L, Haeberli W, Larsen C, Schneider D, Wessels R. 2010. Recent and future warm extreme events and high mountain slope stability. Philos Trans A Math Phys Eng Sci. 368(1919):2435–2459. doi: 10.1098/rsta.2010.0078.
  • Hungr O, McDougall S. 2009. Two numerical models for landslide dynamic analysis. Comput Geosci. 35(5):978–992. doi: 10.1016/j.cageo.2007.12.003.
  • Hutchinson CM. 1991. A preliminary landslide hazard zonation of the undercliff of the Isle of Wight. London: Slope Stability Engineering, Thomas Telford; p. 197–205.
  • Hutchinson JN. 1995. Keynote paper: landslide hazard assessment. In: Bell DH, editor. Landslides. Rotterdam: Balkema; p. 1805–1841.
  • Jain AK. 1971. Stratigraphy and tectonics of lesser Himalayan region of Uttarkashi, Garhwal Himalaya. Himal Geol. 1:25–58.
  • Jain S, Khosa R, Gosain AK. 2022. Impact of landslide size and settings on landslide scaling relationship: a study from the Himalayan regions of India. Landslides. 19(2):373–385. doi: 10.1007/s10346-021-01794-3.
  • Javed IT, Ningsheng C, Regmi AD, Jun L. 2017. Spatial distribution analysis and susceptibility mapping of landslides triggered before and after mw7.8 Gorkha earthquake along upper Bhote Koshi, Nepal. Arab J Geosci. 10(13):1–24.
  • Jibson RW. 1989. Debris flows in southern Puerto Rico. In: Schultz AP, Jibson RW, editors. Landslide processes of the eastern United States and Puerto Rico. Geological Society of America Special Paper 236; p. 29–56. doi: 10.1130/SPE236-p29.
  • Jomelli V, Pech VP, Chochillon C, Brunstein D. 2004. Geomorphic variations of debris flows and recent climatic change in the French Alps. Clim Change. 64(1/2):77–102. doi: 10.1023/B:CLIM.0000024700.35154.44.
  • Juliev M, Mergili M, Mondal I, Nurtaev B, Pulatov A, Hubl J. 2019. Comparative analysis of statistical methods for landslide susceptibility mapping in the Bostanlik District, Uzbekistan. Sci Total Environ. 653:801–814. doi: 10.1016/j.scitotenv.2018.10.431.
  • Kainthura P, Sharma N. 2022. Hybrid machine learning approach for landslide prediction, Uttarakhand, India. Sci Rep. 12(1):20101. doi: 10.1038/s41598-022-22814-9.
  • Kamp U, Growley BJ, Khattak GA, Owen LA. 2008. GIS-based landslide susceptibility mapping for the 2005 Kashmir earthquake region. Geomorphology. 101(4):631–642. doi: 10.1016/j.geomorph.2008.03.003.
  • Kanungo DP, Arora MK, Sarkar S, Gupta RP. 2009. A fuzzy set based approach for integration of thematic maps for landslide susceptibility zonation. Georisk. 3(1):30–43. doi: 10.1080/17499510802541417.
  • Kanungo DP, Sarkar S, Sharma S. 2011. Combining neural network with fuzzy, certainty factor and likelihood ratio concepts for spatial prediction of landslides. Nat Hazards. 59(3):1491–1512. doi: 10.1007/s11069-011-9847-z.
  • Kanungo DP, Sharma S. 2014. Rainfall thresholds for prediction of shallow landslides around Chamoli-Joshimath region, Garhwal Himalayas, India. Landslides. 11(4):629–638. doi: 10.1007/s10346-013-0438-9.
  • Kargel JS, Leonard GJ, Shugar DH, Haritashya UK, Bevington A, Fielding EJ, Fujita K, Geertsema M, Miles ES, Steiner J, et al. 2016. Geomorphic and geologic controls of geohazards induced by Nepal’s 2015 Gorkha earthquake. Science. 351(6269):aac8353. doi: 10.1126/science.aac8353.
  • Kayastha P, Dhital MR, De Smedt F. 2012. Landslide susceptibility mapping using the weight of evidence method in the Tinau watershed, Nepal. Nat Hazards. 63(2):479–498. doi: 10.1007/s11069-012-0163-z.
  • Kayastha P. 2015. Landslide susceptibility mapping and factor effect analysis using frequency ratio in a catchment scale: a case study from Garuwa sub-basin, East Nepal. Arab J Geosci. 8(10):8601–8613. doi: 10.1007/s12517-015-1831-6.
  • Khanduri S. 2017. Landslide hazard around Mussoorie: the Lesser Himalayan tourist destination of Uttarakhand, India. J Geogr Nat Disast. 7(2):1000200. doi: 10.4172/2167-0587.1000200.
  • Khandurı S. 2022. Disastrous events of 2021 in Uttarakhand province of India: causes, consequences and suggestions for disaster risk reduction (DRR). IJESKA. 4(2):178–188.
  • Kornejady A, Ownegh M, Bahremand A. 2017. Landslide susceptibility assessment using maximum entropy model with two different data sampling methods. Catena. 152:144–162. doi: 10.1016/j.catena.2017.01.010.
  • Kumar R, Anbalagan R. 2016. Landslide susceptibility mapping using analytical hierarchy process (AHP) in Tehri reservoir rim region, Uttarakhand. J Geol Soc India. 87(3):271–286. doi: 10.1007/s12594-016-0395-8.
  • Larsen MC, Torres Sanchez AJ. 1992. Landslides triggered by hurricane Hugo in eastern Puerto Rico, September 1989. Carib J Sci. 28(3–4):113–125.
  • Lee JM. 2004. An efficient algorithm for Naive Bayes with matrix transposition.
  • Lee S, Choi J, Min K. 2004. Probabilistic landslide hazard mapping using GIS and remote sensing data at Boun, Korea. Int J Rem Sens. 25(11):2037–2052. doi: 10.1080/01431160310001618734.
  • Lee S, Choi J. 2004. Landslide susceptibility mapping using GIS and the weight-of-evidence model. Int J Geogr Inf Sci. 18(8):789–814. doi: 10.1080/13658810410001702003.
  • LeForte P. 1975. Himalayas: the collided range. Present Knowledge of the continental arc. Am J Sci. 275A:1–44.
  • Li M, Ge D, Liu B, Zhang L, Wang Y, Guo X, Wang Y, Zhang D. 2019. Research on development characteristics and failure mechanism of land subsidence and ground fissure in Xi’an, monitored by using time-series SAR interferometry. Geomat Nat Haz Risk. 10(1):699–718. doi: 10.1080/19475705.2018.1542350.
  • Liu CN. 2008. Landslide hazard mapping using Monte Carlo simulation–a case study in Taiwan. In: Liu H, Deng A, Chu J, editors. Geotechnical engineering for disaster mitigation and rehabilitation. Berlin; Heidelberg: Springer. doi: 10.1007/978-3-540-79846-0_14.
  • Liu X, Miao C. 2018. Large-scale assessment of landslide hazard, vulnerability and risk in China. Geomat Nat Hazards Risk. 9(1):1037–1052. doi: 10.1080/19475705.2018.1502690.
  • Mandal S, Mandal K. 2018. Bivariate statistical index for landslide susceptibility mapping in the Rorachu River Basin of eastern Sikkim Himalaya, India. Spat Inf Res. 26(1):59–75. doi: 10.1007/s41324-017-0156-9.
  • Marin RJ, Mattos ÁJ. 2020. Physically-based landslide susceptibility analysis using Monte Carlo simulation in a tropical mountain basin. Georisk. 14(3):192–205. doi: 10.1080/17499518.2019.1633582.
  • Mathewson CC, Keaton JR, Santi PM. 1990. Role of bedrock ground water in the initiation of debris flows and sustained post-storm stream discharge. Bull Assoc Eng. XXVII(1):73–83. doi: 10.2113/gseegeosci.xxvii.1.73.
  • McDougall S, Hungr O. 2005. Dynamic modelling of entrainment in rapid landslides. Can Geotech J. 42(5):1437–1448. doi: 10.1139/t05-064.
  • Metha RL, Koli SR, Koli VR. 2015. Landslide hazard zonation using remote sensing and GIS technology. A case study of landslide prone area near Mahabaleshwar, Maharashtra. Int J Eng Res Gen Sci. 3(4):6–16.
  • Micheletti N, Foresti L, Robert S, Leuenberger M, Pedrazzini A, Jaboyedoff M, Kanevski M. 2014. Machine learning feature selection methods for landslide susceptibility mapping. Math Geosci. 46(1):33–57. doi: 10.1007/s11004-013-9511-0.
  • Middlemess CS. 1885. A fossiliferous series in the Lower Himalaya in Garhwal. Rec Geol Surv India. 18:73–77.
  • Mihaela C, Martin B, Marta CJ, Marius V. 2011. Landslide susceptibility assessment using the bivariate statistical analysis and the index of entropy in the Sibiciu Basin (Romania). Environ Earth Sci. 63:397–406.
  • Milaghardan AH, Delavar M, Chehreghan A. 2016. Uncertainty in landslide occurrence prediction using Dempster–Shafer theory. Model Earth Syst Environ. 2(4):1–10. doi: 10.1007/s40808-016-0240-5.
  • Misra RC, Sharma RP. 1967. Geology of Devidhura area Almora UP. J Geol Soc India. 8:110–118.
  • Montgomery DR, Dietrich WE. 1994. A physically based model for the topographic control on shallow landsliding. Water Resour Res. 30(4):1153–1171. doi: 10.1029/93WR02979.
  • Mustafa RM, Pradhan B, Helmi ZMS, Yusoff ZM. 2017. Automatic landslide detection using Dempster–Shafer theory from LiDAR-derived data and orthophotos. Geomat Nat Hazards Risk. 8(2):1935–1954. doi: 10.1080/19475705.2017.1401013.
  • Nefeslioglu HA, Sezer E, Gokceoglu C, Bozkir AS, Duman TY. 2010. Assessment of landslide susceptibility by decision trees in the metropolitan area of Istanbul, Turkey. Math Probl Eng. 2010:901095. doi: 10.1155/2010/901095.
  • Norouzi Banis Y, Bathurst JC, Walling DE. 2004. Use of caesium-137 data to evaluate SHETRAN simulated long-term erosion patterns in arable lands. Hydrol Process. 18(10):1795–1809. doi: 10.1002/hyp.1447.
  • Nsengiyumva JB, Luo G, Amanambu AC, Mind’je R, Habiyaremye G, Karamage F, Ochege FU, Mupenzi C. 2019. Comparing probabilistic and statistical methods in landslide susceptibility modeling in Rwanda/Centre-Eastern Africa. Sci Total Environ. 659:1457–1472. doi: 10.1016/j.scitotenv.2018.12.248.
  • Numada M, Konagai K, Ito H, Johansson J. 2003. Material point method for run-out analysis of earthquake-induced long-traveling soil flows.
  • Oh HJ, Pradhan B. 2011. Application of a neuro-fuzzy model to landslide-susceptibility mapping for shallow landslides in a tropical hilly area. Comput Geosci. 37(9):1264–1276. doi: 10.1016/j.cageo.2010.10.012.
  • Ozdemir A, Altural T. 2013. A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: sultan Mountains, SW Turkey. J Asian Earth Sci. 64:180–197. doi: 10.1016/j.jseaes.2012.12.014.
  • Pachauri AK. 2010. Landslide hazard mapping and assessment in Himalayas. Fifth Int Conf on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics; May 24–29; San Diego, CA, USA. http:scholarsmine.mst.edu/icrageesd/05Sicrageesd/session04b/22.
  • Pack RT, Tarboton DG, Goodwin CN. 1998. The SINMAP approach to terrain stability mapping. 8th Congress of the International Association of Engineering Geology; Vancouver, Canada.
  • Pack RT, Tarboton DG, Goodwin CN. 2001. Assessing terrain stability in a GIS using SINMAP. 15th Annual GIS Conference; Vancouver, British Columbia, Canada.
  • Pal M, Mather PM. 2003. An assessment of the effectiveness of decision tree methods for land cover classification. Rem Sens Environ. 86(4):554–565. doi: 10.1016/S0034-4257(03)00132-9.
  • Paranunzio R, Laio F, Nigrelli G, Chiarle M. 2015. A method to reveal climatic variables triggering slope failures at high elevation. Nat Hazards. 76(2):1039–1061. doi: 10.1007/s11069-014-1532-6.
  • Park NW. 2015. Using maximum entropy modeling for landslide susceptibility mapping with multiple geo environmental data sets. Environ Earth Sci. 73(3):937–949. doi: 10.1007/s12665-014-3442-z.
  • Park S, Choi C, Kim B, Kim J. 2013. Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea. Environ Earth Sci. 68(5):1443–1464. doi: 10.1007/s12665-012-1842-5.
  • Parkin G. 1995. [SHETRAN water flow component, equations and algorithms] [Ph.D. thesis]. Newcastle upon Tyne: Newcastle University.
  • Pasuto A, Silvano S. 1998. Rainfall as a trigger of shallow mass movements. A case study in the Dolomites, Italy. Environ Geol. 35(2–3):184–189. doi: 10.1007/s002540050304.
  • Petley DN, Hearn GJ, Hart A, Rosser NJ, Dunning SA, Oven K, Mitchell WA. 2007. Trends in landslide occurrence in Nepal. Nat Hazards. 43(1):23–44. doi: 10.1007/s11069-006-9100-3.
  • Pham BT, Tien Bui D, Dholakia MB, Prakash I, Pham HV. 2016. A comparative study of least square support vector machines and multiclass alternating decision trees for spatial prediction of rainfall-induced landslides in a tropical cyclones area. Geotech Geol Eng. 34(6):1807–1824. doi: 10.1007/s10706-016-9990-0.
  • Pham BT, Tien Bui D, Pourghasemi HR, Indra P, Dholakia MB. 2015. Landslide susceptibility assessment in the Uttarakhand area (India) using GIS: a comparison study of prediction capability of naïve bayes, multilayer perceptron neural networks, and functional trees methods. Theor Appl Climatol. 128(1–2):255–273. doi: 10.1007/s00704-015-1702-9.
  • Pham BT, Tien Bui D, Prakash I, Dholakia MB. 2015. A comparison study of predictive ability of support vector machine and Naive Bayes tree methods in landslide susceptibility assessment at an area between Tehri Garhwal and Pauri Garhwal, Uttarakhand State (India) using GIS. Proceedings of the National Symposium on Geomatics for Digital India Conventions of ISG & ISRS; Jaipur, India.
  • Polykretis C, Chalkias C, Ferentinou M. 2019. Adaptive neuro-fuzzy inference system (ANFIS) modeling for landslide susceptibility assessment in a Mediterranean hilly area. Bull Eng Geol Environ. 78(2):1173–1187. doi: 10.1007/s10064-017-1125-1.
  • Pourghasemi HR, Kerle N. 2016. Random forests and evidential belief function‐based landslide susceptibility assessment in Western Mazandaran Province, Iran. Environ Earth Sci. 75:185.
  • Pourghasemi HR, Mohammady M, Pradhan B. 2012. Landslide susceptibility mapping using index of entropy and conditional probability models in GIS: Safarood Basin, Iran. Catena. 97:71–84. doi: 10.1016/j.catena.2012.05.005.
  • Pourghasemi HR, Rahmati O. 2018. Prediction of the landslide susceptibility: which algorithm, which precision? Catena. 162:177–192. doi: 10.1016/j.catena.2017.11.022.
  • Pradhan AM, Kim Y. 2017. Spatial data analysis and application of evidential belief functions to shallow landslide susceptibility mapping at Mt. Umyeon, Seoul, Korea. Bull Eng Geol Environ. 76(4):1263–1279. doi: 10.1007/s10064-016-0919-x.
  • Pradhan AMS, Dawadi A, Kim YT. 2012. Use of different bivariate statistical landslide susceptibility methods: a case study of Khulekhani Watershed, Nepal. J Nepal Geol Soc. 44:1–12. doi: 10.3126/jngs.v44i0.24483.
  • Pradhan B, Lee S, Buchroithner MF. 2010. A GIS-based backpropagation neural network model and its cross-application and validation for landslide susceptibility analysis. Comput Environ Urban Syst. 34(3):216–235. doi: 10.1016/j.compenvurbsys.2009.12.004.
  • Pradhan B, Lee S. 2010. Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environ Model Softw. 25(6):747–759. doi: 10.1016/j.envsoft.2009.10.016.
  • Pradhan B, Youssef AM. 2010. Manifestation of remote sensing data and GIS on landslide hazard analysis using spatial-based statistical models. Arab J Geosci. 3(3):319–326. doi: 10.1007/s12517-009-0089-2.
  • Pradhan B. 2010. Landslide susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches. J Indian Soc Remote Sens. 38(2):301–320. doi: 10.1007/s12524-010-0020-z.
  • Pradhan B. 2013. A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Comput Geosci. 51:350–365. doi: 10.1016/j.cageo.2012.08.023.
  • Rai DK, Xiong D, Zhao W, Zhao D, Zhang B, Dahal NM, Wu Y, Baig MA. 2022. An investigation of landslide susceptibility using logistic regression and statistical index methods in Dailekh District, Nepal. Chin Geogr Sci. 32(5):834–851. doi: 10.1007/s11769-022-1304-2.
  • Ram P, Gupta V, Devi M, Vishwakarma N. 2020. Landslide susceptibility mapping using bivariate statistical method for the hilly township of Mussoorie and its surrounding areas, Uttarakhand Himalaya. J Earth Syst Sci. 129(1):1–18.
  • Regmi AD, Devkota KC, Yoshida K, Pradhan B, Pourghasemi HR, Kumamoto T, Akgun A. 2014. Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya. Arab J Geosci. 7(2):725–742. doi: 10.1007/s12517-012-0807-z.
  • Richards A, Argles T, Harris N, Parrish R, Ahmad T, Darbyshire F, Draganits E. 2005. Himalayan architecture constrained by isotopic tracers from clastic sediments. Earth Planet Sci Lett. 236(3–4):773–796. doi: 10.1016/j.epsl.2005.05.034.
  • Robinson TR, Rosser NJ, Densmore AL, Williams JG, Kincey ME, Benjamin J, Bell HJA. 2017. Rapid post-earthquake modelling of coseismic landslide magnitude and distribution for emergency response decision support. Nat Hazards Earth Syst Sci Discuss. 17:1521–1540. doi: 10.5194/nhess-2017-83.
  • Roşian G, Horváth C, Muntean L, Mihăiescu R, Arghiuş V, Maloş C, Baciu N, Măcicăşan V, Mihăiescu T. 2016. Analysing landslides spatial distribution using GIS. Case study: Transylvanian Plain. Proenvironment. 9:366–372.
  • Rossi M, Guzzetti F, Reichenbach P, Mondini AC, Peruccacci S. 2010. Optimal landslide susceptibility zonation based on multiple forecasts. Geomorphology. 114(3):129–142. doi: 10.1016/j.geomorph.2009.06.020.
  • Rupke J. 1974. Stratigraphic and structural evolution of the Kumaon Lesser Himalaya. Sediment Geol. 11(2–4):81–265. doi: 10.1016/0037-0738(74)90027-X.
  • Saha A, Mandal S, Saha S. 2020. Geo-spatial approach-based landslide susceptibility mapping using analytical hierarchical process, frequency ratio, logistic regression and their ensemble methods. SN Appl Sci. 2(10):1647. doi: 10.1007/s42452-020-03441-3.
  • Saha AK, Gupta RP, Sarkar I, Arora MK, Csaplovics E. 2005. An approach for GIS-based statistical landslide susceptibility zonation with a case study in the Himalayas. Landslides. 2(1):61–69. doi: 10.1007/s10346-004-0039-8.
  • Salimah A, Hasan R. 2020. Stability analysis and landslide countermeasures using Plaxis2d in the Cigentis Watersheds, Karawang, West Jawa. doi: 10.4108/eai.18-10-2019.2289904.
  • Sangeeta, Maheshwari BK. 2019. Earthquake-induced landslide hazard assessment of Chamoli District, Uttarakhand using relative frequency ratio method. Indian Geotech J. 49, 108–123. doi: 10.1007/s40098-018-0334-2.
  • Sarkar S, Kanungo D. 2004. An integrated approach for landslide susceptibility mapping using remote sensing and GIS. Photogramm Eng Rem Sens. 70(5):617–625. doi: 10.14358/PERS.70.5.617.
  • Sarkar S, Roy AK, Raha P. 2016. Deterministic approach for susceptibility assessment of shallow debris slide in the Darjeeling Himalayas, India. Catena. 142:36–46. doi: 10.1016/j.catena.2016.02.009.
  • Searle MP, Simpson RL, Law RD, Parrish RR, Waters DJ. 2003. The structural geometry, metamorphic and magmatic evolution of the Everest massif, High Himalaya of Nepal–south Tibet. J Geol Soc. 160(3):345–366. doi: 10.1144/0016-764902-126.
  • Sezer EA, Pradhan B, Gokceoglu C. 2011. Manifestation of an adaptive neuro-fuzzy model on landslide susceptibility mapping: Klang valley, Malaysia. Exp Syst Appl. 38(7):8208–8219. doi: 10.1016/j.eswa.2010.12.167.
  • Sharma G, Sanjeevi S. 2015. Landslide hazard zonation using remote sensing, ground penetrating radar surveys and geographical information system in Katteri. Int J Curr Eng Technol. 5(2):1160–1169.
  • Sharma LP, Nilanchal P, Ghose MK, Debnath P. 2013. Synergistic application of fuzzy logic and geo-informatics for landslide vulnerability zonation – a case study in Sikkim Himalayas, India. Appl Geomat. 5(4):271–284. doi: 10.1007/s12518-013-0115-7.
  • Simon A, Larsen MC, Hupp CR. 1990. The role of soil processes in determining mechanisms of slope failure and hillside development in a humid-tropical forest, Eastern Puerto Rico. Geomorphology. 3(3–4):263–286. doi: 10.1016/0169-555X(90)90007-D.
  • Solaimani K, Mousav SZ, Kavian A. 2013. Landslide susceptibility mapping based on frequency ratio and logistic regression models. Arab J Geosci. 6(7):2557–2569. doi: 10.1007/s12517-012-0526-5.
  • Srivastava P, Mitra G. 1994. Thrust geometries and deep structure of the outer and lesser Himalaya, Kumaon and Garhwal (India): implications for evolution of the Himalayan fold and thrust belt. Tectonics. 13(1):89–109. doi: 10.1029/93TC01130.
  • Steorts RC. 2014. Linear and quadratic discriminant analysis; p. 1–21.
  • Sur U, Singh P, Meena SR. 2020. Landslide susceptibility assessment in a lesser Himalayan road corridor (India) applying fuzzy AHP technique and earth-observation data. Geomat Nat Hazards Risk. 11(1):2176–2209. doi: 10.1080/19475705.2020.1836038.
  • Suzen ML, Doyuran V. 2004. Data driven bivariate landslide susceptibility assessment using geographical information systems: a method and application to Asarsuyu catchment, Turkey. Eng Geol. 71(3–4):303–321. doi: 10.1016/S0013-7952(03)00143-1.
  • Süzen ML, Kaya B. 2012. Evaluation of environmental parameters in logistic regression models for landslide susceptibility mapping. Int J Digit Earth. 5(4):338–355. doi: 10.1080/17538947.2011.586443.
  • Tang Y, Feng F, Guo Z, Feng W, Li Z, Wang J, Sun Q, Ma H, Li Y. 2020. Integrating principal component analysis with statistically-based models for analysis of causal factors and landslide susceptibility mapping: a comparative study from the Loess Plateau Area in Shanxi (China). J Clean Prod. 277:124159. doi: 10.1016/j.jclepro.2020.124159.
  • Tanoli JI,Chen N,Regmi A,Jun L. 2017. Spatial distribution analysis and susceptibility mapping of landslides triggered before and after Mw7.8 Gorkha earthquake along upper Bhote Koshi, Nepal. Arabian J. Geosci. doi: 10.10.1007/s12517-017-3026-9.
  • Tien Bui D, Pradhan B, Lofman O, Revhaug I. 2012. Landslide susceptibility assessment in Vietnam using support vector machines, decision tree, and Naive Bayes models. Math Probl Eng. 2012:974638. doi: 10.1155/2012/974638.
  • Tien Bui D, Tuan TA, Klempe H, Pradhan B, Revhaug I. 2016. Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, Kernel logistic regression, and logistic model tree. Landslides. 13(2):361–378. doi: 10.1007/s10346-015-0557-6.
  • Tiwari VN, Pandey VHR, Kainthola A, Singh PK, Singh KH, Singh TN. 2020. Assessment of Karmi Landslide Zone, Bageshwar, Uttarakhand, India. J Geol Soc India. 96(4):385–393. doi: 10.1007/s12594-020-1567-0.
  • Trigila A, Iadanza C, Esposito C, Scarascia Mugnozza G. 2015. Comparison of logistic regression and random forests techniques for shallow landslide susceptibility assessment in Giampilieri (NE Sicily, Italy). Geomorphology. 249:119–136. doi: 10.1016/j.geomorph.2015.06.001.
  • Turner AK, Schuster RL. 1996. Landslides: investigation and mitigation. Special Report 247. Washington (DC): Transportation Research Board, The National Academies Press.
  • Vahidnia MH, Alesheikh AA, Alimohammadi A, Hosseinali F. 2010. A GIS-based neuro-fuzzy procedure for integrating knowledge and data in landslide susceptibility mapping. Comput Geosci. 36(9):1101–1114. doi: 10.1016/j.cageo.2010.04.004.
  • Vakhshoori V, Zare M. 2016. Landslide susceptibility mapping by comparing weight of evidence, fuzzy logic, and frequency ratio methods. Geomat Nat Hazards Risk. 7(5):1731–1752. doi: 10.1080/19475705.2016.1144655.
  • Valdiya KS. 1979. Outline of the structure of the Kumaun Himalaya. J Geol Soc India 20:147–157.
  • Valdiya KS. 1980. Geology of Kumaun Lesser Himalaya, Interim Record: Dehradun, Wadia Institute of Himalayan Geology.
  • Van Westen CJ. 1997. Statistical landslide hazard analysis, ILWIS 2.1 for Windows application guide. Enschede: ITC Publication; p. 73–84.
  • Varnes DJ, IAEG. 1984. Commission on landslide and other mass movement on slopes, landslide hazard zonation: a review of principles and practice. Paris: The UNESCO Press; p. 63.
  • Varnes DJ. 1978. Slope movement types and processes. In: Schuster RL, Krizek RJ, editors. Special report 176: landslides: analysis and control. Washington (DC): Transportation and Road Research Board, National Academy of Science; p. 11–33.
  • Vijith H, Madhu G. 2008. Estimating potential landslide sites of an upland sub-watershed in Western Ghat’s of Kerala (India) through frequency ratio and GIS. Environ Geol. 55(7):1397–1405. doi: 10.1007/s00254-007-1090-2.
  • Vorpahl P, Elsenbeer H, Märker M, Schröder B. 2012. How can statistical models help to determine driving factors of landslides? Ecol Model. 239:27–39. doi: 10.1016/j.ecolmodel.2011.12.007.
  • Wang Y, Fang Z, Hong H. 2019. Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China. Sci Total Environ. 666:975–993. doi: 10.1016/j.scitotenv.2019.02.263.
  • Watari M. 1986. Mechanism and mitigation measures of slope disasters. Sankaido, Japan Landslide Society; p. 170.
  • Weidner L, DePrekel K, Oommen T, Vitton S. 2019. Investigating large landslides along a river valley using combined physical, statistical, and hydrologic modeling. Eng Geol. 259:105169. doi: 10.1016/j.enggeo.2019.105169.
  • Wilson RC, Torikai JD, Ellen SD. 1992. Development of rainfall warning thresholds for debris flows in the Honolulu District, Oahu. U.S. Geological Survey Open-File Report 92-521; p. 45.
  • Wu W, Sidle RC. 1997. Application of a distributed shallow landslide analysis model (dSLAM) to managed forested catchments in Oregon, USA.
  • Yalcin A, Reis S, Aydinoglu AC, Yomralioglu T. 2011. A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. Catena. 85(3):274–287. doi: 10.1016/j.catena.2011.01.014.
  • Yesilnacar E, Topal T. 2005. Landslide susceptibility mapping: a comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Eng Geol. 79(3–4):251–266. doi: 10.1016/j.enggeo.2005.02.002.
  • Yilmaz I, Keskin I. 2009. GIS based statistical and physical approaches to landslide susceptibility mapping (Sebinkarahisar, Turkey). Bull Eng Geol Environ. 68(4):459–471. doi: 10.1007/s10064-009-0188-z.
  • Yilmaz I. 2010. Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine. Environ Earth Sci. 61(4):821–836. doi: 10.1007/s12665-009-0394-9.
  • Yin A. 2005. Cenozoic evolution of the Himalayan orogen as constrained by a long-strike variations of structural geometry, exhumation history, and foreland sedimentation. Earth Sci Rev. 76(1–2):1–131. ISSN 0012-8252. doi: 10.1016/j.earscirev.2005.05.004.
  • Youssef AM, Pourghasemi HR, Pourtaghi ZS, Al Katheeri MM. 2016. Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides. 13(5):839–856. doi: 10.1007/s10346-015-0614-1.
  • Zhang T, Han L, Chen W, Shahabi H. 2018. Hybrid integration approach of entropy with logistic regression and support vector machine for landslide susceptibility modelling.