699
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Estimating the period of probable landslide event using advanced D-InSAR technique for time-series deformation study of Kotrupi region

, &
Article: 2281245 | Received 15 Dec 2022, Accepted 03 Nov 2023, Published online: 27 Nov 2023

References

  • Álvarez-Mozos J, Verhoest NE, Larrañaga A, Casalí J, González-Audícana M. 2009. Influence of surface roughness spatial variability and temporal dynamics on the retrieval of soil moisture from SAR observations. Sensors. 9(1):463–489. doi: 10.3390/s90100463.
  • Antonielli, B., Mazzanti, P., Rocca, A., Bozzano, F., & Dei Cas, L. (2019). A-DInSAR performance for updating landslide inventory in mountain areas: an example from Lombardy region (Italy). Geosciences, 9(9), 364. doi: 10.3390/geosciences9090364.
  • Aslan G, Foumelis M, Raucoules D, De Michele M, Bernardie S, Cakir Z. 2020. Landslide mapping and monitoring using persistent scatterer interferometry (PSI) technique in the French Alps. Remote Sens. 12(8):1305. doi: 10.3390/rs12081305.
  • Bechini R, Baldini L, Chandrasekar V. 2013. Polarimetric radar observations in the ice region of precipitating clouds at C-band and X-band radar frequencies. J Appl Meteorol Climatol. 52(5):1147–1169. doi: 10.1175/JAMC-D-12-055.1.
  • Bhasin R, Aslan G, Dehls J. 2023. Ground investigations and detection and monitoring of landslides using SAR interferometry in Gangtok, Sikkim Himalaya. GeoHazards. 4(1):25–39. doi: 10.3390/geohazards4010003.
  • Blanco-Sánchez P, Mallorquí JJ, Duque S, Monells D. 2008. The coherent pixels technique (CPT): an advanced DInSAR technique for nonlinear deformation monitoring. Pure Appl Geophys. 165(6):1167–1193. doi: 10.1007/s00024-008-0352-6.
  • Burrows K, Walters RJ, Milledge D, Spaans K, Densmore AL. 2019. A new method for large-scale landslide classification from satellite radar. Remote Sens. 11(3):237. doi: 10.3390/rs11030237.
  • Carey LD, Rutledge SA, Ahijevych DA, Keenan TD. 2000. Correcting propagation effects in C-band polarimetric radar observations of tropical convection using differential propagation phase. J Appl Meteor. 39(9):1405–1433. doi: 10.1175/1520-0450(2000)039<1405:CPEICB>2.0.CO;2.
  • Chatterjee RS, Thapa S, Singh KB, Varunakumar G, Raju EVR. 2015. Detecting, mapping and monitoring of land subsidence in Jharia Coalfield, Jharkhand, India by spaceborne differential interferometric SAR, GPS and precision levelling techniques. J Earth Syst Sci. 124(6):1359–1376. doi: 10.1007/s12040-015-0606-5.
  • Chavez PS. 1996. Image-based atmospheric corrections-revisited and improved. Photogramm Eng Remote Sens. 62(9):1025–1035.
  • Chen CW, Zebker HA. 2002. Phase unwrapping for large SAR interferograms: statistical segmentation and generalized network models. IEEE Trans Geosci Remote Sensing. 40(8):1709–1719. doi: 10.1109/TGRS.2002.802453.
  • Choubey VM, Mukherjee PK, Bajwa BS, Walia V. 2007. Geological and tectonic influence on water–soil–radon relationship in Mandi–Manali area, Himachal Himalaya. Environ Geol. 52(6):1163–1171. doi: 10.1007/s00254-006-0553-1.
  • Colesanti C, Wasowski J. 2006. Investigating landslides with space-borne Synthetic Aperture Radar (SAR) interferometry. Eng Geol. 88(3-4):173–199. doi: 10.1016/j.enggeo.2006.09.013.
  • Constantin M, Bednarik M, Jurchescu MC, Vlaicu M. 2011. Landslide susceptibility assessment using the bivariate statistical analysis and the index of entropy in the Sibiciu Basin (Romania). Environ Earth Sci. 63(2):397–406. doi: 10.1007/s12665-010-0724-y.
  • Crippen RE. 1990. Calculating the vegetation index faster. Remote Sens Environ. 34(1):71–73. doi: 10.1016/0034-4257(90)90085-Z.
  • Crosetto M, Monserrat O, Cuevas M, Crippa B. 2011. Spaceborne differential SAR interferometry: data analysis tools for deformation measurement. Remote Sens. 3(2):305–318. doi: 10.3390/rs3020305.
  • Crosetto M, Monserrat O, Luzi G, Cuevas M, Devanthéry N. 2015. Deformation monitoring using ground-based SAR data. In: Lollino G, Manconi A, Guzzetti F, Culshaw M, Bobrowsky P, Luino F, editors. Engineering geology for society and territory-volume 5. Cham: Springer; p. 137–140. doi: 10.1007/978-3-319-09048-1_27.
  • Devaraj S, Yarrakula K, Martha TR, Murugesan GP, Vaka DS, Surampudi S, Wadhwa A, Loganathan P, Budamala V. 2022. Time series SAR interferometry approach for landslide identification in mountainous areas of Western Ghats, India. J Earth Syst Sci. 131(2):1–17. doi: 10.1007/s12040-022-01876-3.
  • Doin MP, Lasserre C, Peltzer G, Cavalié O, Doubre C. 2009. Corrections of stratified tropospheric delays in SAR interferometry: validation with global atmospheric models. J Appl Geophys. 69(1):35–50. doi: 10.1016/j.jappgeo.2009.03.010.
  • Fárová K, Jelének J, Kopačková-Strnadová V, Kycl P. 2019. Comparing DInSAR and PSI techniques employed to Sentinel-1 data to monitor highway stability: a case study of a massive Dobkovičky landslide, Czech Republic. Remote Sens. 11(22):2670. doi: 10.3390/rs11222670.
  • Fawcett T. 2006. An introduction to ROC analysis. Pattern Recog Lett. 27(8):861–874. doi: 10.1016/j.patrec.2005.10.010.
  • Fentahun TM, Bagyaraj M, Melesse MA, Korme T. 2021. Seismic hazard sensitivity assessment in the Ethiopian Rift, using an integrated approach of AHP and DInSAR methods. Egypt J Remote Sens Space Sci. 24(3):735–744. doi: 10.1016/j.ejrs.2021.05.001.
  • Ferretti A, Monti-Guarnieri A, Prati C, Rocca F. 2007. InSAR processing: a practical approach. InSAR principles: guidelines for SAR interferometry processing and interpretation, ser. ESA TM. ESA. [accessed 2001 Oct 21]. https://ui.adsabs.harvard.edu/abs/2007ESATM.19….F/abstract.
  • Fiaschi S, Fabris M, Floris M, Achilli V. 2018. Estimation of land subsidence in deltaic areas through differential SAR interferometry: the Po River Delta case study (Northeast Italy). Int J Remote Sens. 39(23):8724–8745. doi: 10.1080/01431161.2018.1490977.
  • Gupta SK, Shukla DP. 2018. Application of drone for landslide mapping, dimension estimation and its 3D reconstruction. J Indian Soc Remote Sens. 46(6):903–914. doi: 10.1007/s12524-017-0727-1.
  • Gupta SK, Shukla DP, Thakur M. 2018. Selection of weightages for causative factors used in preparation of Landslide susceptibility zonation (LSZ). Geomatics Nat Hazards Risk. 9(1):471–487. doi: 10.1080/19475705.2018.1447027.
  • Guzzetti F, Mondini AC, Cardinali M, Fiorucci F, Santangelo M, Chang KT. 2012. Landslide inventory maps: new tools for an old problem. Earth Sci Rev. 112(1-2):42–66. doi: 10.1016/j.earscirev.2012.02.001.
  • Ho Tong Minh D, Hanssen R, Rocca F. 2020. Radar interferometry: 20 years of development in time series techniques and future perspectives. Remote Sens. 12(9):1364. doi: 10.3390/rs12091364.
  • Hu J, Li Z, Zhu J, Ren X, Ding X. 2010. Inferring three-dimensional surface displacement field by combining SAR interferometric phase and amplitude information of ascending and descending orbits. Sci China Earth Sci. 53(4):550–560. doi: 10.1007/s11430-010-0023-1.
  • Jia H, Wang Y, Ge D, Deng Y, Wang R. 2022. InSAR study of landslides: early detection, three-dimensional, and long-term surface displacement estimation—a case of Xiaojiang River Basin, China. Remote Sens. 14(7):1759. doi: 10.3390/rs14071759.
  • Jianjun ZHU, Zhiwei LI, Jun HU. 2017. Research progress and methods of InSAR for deformation monitoring. Acta Geod Cartogr Sin. 46(10):1717. doi: 10.11947/j.AGCS.2017.20170350.
  • Jolivet R, Grandin R, Lasserre C, Doin MP, Peltzer G. 2011. Systematic InSAR tropospheric phase delay corrections from global meteorological reanalysis data. Geophys Res Lett. 38(17):n/a–n/a. doi: 10.1029/2011GL048757.
  • Jung HS, Won JS, Kim SW. 2009. An improvement of the performance of multiple-aperture SAR interferometry (MAI). IEEE Trans Geosci Remote Sens. 47(8):2859–2869. doi: 10.1109/TGRS.2009.2016554.
  • Jung J, Kim DJ, Lavalle M, Yun SH. 2016. Coherent change detection using InSAR temporal decorrelation model: a case study for volcanic ash detection. IEEE Trans Geosci Remote Sens. 54(10):5765–5775. doi: 10.1109/TGRS.2016.2572166.
  • Jung J, Kim DJ, Park SE. 2014. Correction of atmospheric phase screen in time series InSAR using WRF model for monitoring volcanic activities. IEEE Trans Geosci Remote Sens. 52(5):2678–2689. doi: 10.1109/TGRS.2013.2264532.
  • Kim J, Lin SY, Singh T, Singh RP. 2023. InSAR time series analysis to evaluate subsidence risk of monumental Chandigarh City (India) and surroundings. IEEE Trans Geosci Remote Sens. 61:1–15. doi: 10.1109/TGRS.2023.3305863.
  • Kumar D, Thakur M, Dubey CS, Shukla DP. 2017. Landslide susceptibility mapping & prediction using support vector machine for Mandakini River Basin, Garhwal Himalaya, India. Geomorphology. 295:115–125. doi: 10.1016/j.geomorph.2017.06.013.
  • Lanari R, Mora O, Manunta M, Mallorquí JJ, Berardino P, Sansosti E. 2004. A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms. IEEE Trans Geosci Remote Sens. 42(7):1377–1386. doi: 10.1109/TGRS.2004.828196.
  • Li ZW, Ding XL, Huang C, Zhu JJ, Chen YL. 2008. Improved filtering parameter determination for the Goldstein radar interferogram filter. ISPRS J Photogramm Remote Sens. 63(6):621–634. doi: 10.1016/j.isprsjprs.2008.03.001.
  • Liu X, Zhao C, Zhang Q, Peng J, Zhu W, Lu Z. 2018. Multitemporal loess Landslide inventory mapping with C-, X-and L-band SAR datasets—a case study of Heifangtai Loess Landslides. China. Remote Sens. 10(11):1756. doi: 10.3390/rs10111756.
  • Ma C, Cheng X, Yang Y, Zhang X, Guo Z, Zou Y. 2016. Investigation on mining subsidence based on multi-temporal InSAR and time-series analysis of the small baseline subset—case study of working faces 22201-1/2 in Bu’ertai mine, Shendong coalfield, China. Remote Sens. 8(11):951. doi: 10.3390/rs8110951.
  • Madsen SN, Zebker HA, Martin JANM. 1993. Topographic mapping using radar interferometry: processing techniques. IEEE Trans Geosci Remote Sens. 31(1):246–256. doi: 10.1109/36.210464.
  • Mantovani M, Bossi G, Marcato G, Schenato L, Tedesco G, Titti G, Pasuto A. 2019. New perspectives in landslide displacement detection using sentinel-1 datasets. Remote Sens. 11(18):2135. doi: 10.3390/rs11182135.
  • Massonnet D, Feigl KL. 1998. Radar interferometry and its application to changes in the Earth’s surface. Rev Geophys. 36(4):441–500. doi: 10.1029/97RG03139.
  • Meng Q, Li W, Raspini F, Xu Q, Peng Y, Ju Y, Zheng Y, Casagli N. 2021. Time-series analysis of the evolution of large-scale loess landslides using InSAR and UAV photogrammetry techniques: a case study in Hongheyan, Gansu Province, Northwest China. Landslides. 18(1):251–265. doi: 10.1007/s10346-020-01490-8.
  • Mirmazloumi SM, Gambin ÁF, Wassie Y, Barra A, Palamà R, Crosetto M, Monserrat O, Crippa B. 2022. INSAR deformation time series classification using a convolutional neural network. Int Arch Photogramm Remote Sens Spatial Inf Sci. XLIII-B3-2022:307–312. doi: 10.5194/isprs-archives-XLIII-B3-2022-307-2022.
  • Molini L, Parodi A, Siccardi F. 2008. An observing system simulation experiment for the study on attenuation of C‐band radar measurements. Met Apps. 15(4):523–533. doi: 10.1002/met.102.
  • Mondini AC. 2017. Measures of spatial autocorrelation changes in multitemporal SAR images for event landslides detection. Remote Sens. 9(6):554. doi: 10.3390/rs9060554.
  • Niraj KC, Gupta SK, Shukla DP. 2021. Kotrupi Landslide deformation study in non-urban area using DInSAR and MTInSAR techniques on Sentinel-1 SAR data. Adv Space Res. 70(12):3878–3891. doi: 10.1016/j.asr.2021.11.042.
  • Niraj KC, Gupta SK, Shukla DP. 2022. A comparison of image-based and physics-based atmospheric correction methods for extracting snow and vegetation cover in Nepal Himalayas using Landsat 8 OLI images. J Indian Soc Remote Sens. 50(12):2503–2521. doi: 10.1007/s12524-022-01616-6.
  • Niraj KC, Singh A, Shukla DP. 2023. Effect of the Normalized Difference Vegetation Index (NDVI) on GIS-enabled bivariate and multivariate statistical models for landslide susceptibility mapping. J Indian Soc Remote Sens. 51(8):1739–1756. doi: 10.1007/s12524-023-01738-5.
  • Normand JC, Heggy E. 2015. InSAR assessment of surface deformations in urban coastal terrains associated with groundwater dynamics. IEEE Trans Geosci Remote Sens. 53(12):6356–6371. doi: 10.1109/TGRS.2015.2437368.
  • Pawluszek-Filipiak K, Borkowski A. 2020. Integration of DInSAR and SBAS Techniques to determine mining-related deformations using sentinel-1 data: the case study of Rydułtowy mine in Poland. Remote Sens. 12(2):242. doi: 10.3390/rs12020242.
  • Perissin D, Wang Z, Wang T. 2011. The SARPROZ InSAR tool for urban subsidence/manmade structure stability monitoring in China. Proceedings of 34th International Symposium on Remote Sensing of Environment The GEOSS Era: Towards Operational Environmental Monitoring; Apr 10–15; Sydney, Australia. https://www.isprs.org/proceedings/2011/isrse-34/
  • Pradhan SP, Panda SD, Roul AR, Thakur M. 2019. Insights into the recent Kotrupi Landslide of August 2017, India: a geological investigation and slope stability analysis. Landslides. 16(8):1529–1537. doi: 10.1007/s10346-019-01186-8.
  • Prati CLAUDIO, Ferretti A, Perissin D. 2010. Recent advances on surface ground deformation measurement by means of repeated space-borne SAR observations. J Geodyn. 49(3-4):161–170. doi: 10.1016/j.jog.2009.10.011.
  • Reigber A, Scheiber R, Jager M, Prats-Iraola P, Hajnsek I, Jagdhuber T, Papathanassiou KP, Nannini M, Aguilera E, Baumgartner S, et al. 2013. Very-high-resolution airborne synthetic aperture radar imaging: signal processing and applications. Proc IEEE. 101(3):759–783. doi: 10.1109/JPROC.2012.2220511.
  • Rosi A, Tofani V, Tanteri L, Tacconi Stefanelli C, Agostini A, Catani F, Casagli N. 2018. The new landslide inventory of Tuscany (Italy) updated with PS-InSAR: geomorphological features and landslide distribution. Landslides. 15(1):5–19. doi: 10.1007/s10346-017-0861-4.
  • Rott H, Nagler T. 2006. The contribution of radar interferometry to the assessment of landslide hazards. Adv Space Res. 37(4):710–719. doi: 10.1016/j.asr.2005.06.059.
  • Sharma P, Rawat S, Gupta AK. 2019. Study and remedy of Kotropi landslide in Himachal Pradesh, India. Indian Geotech J. 49(6):603–619. doi: 10.1007/s40098-018-0343-1.
  • Shirani K, Pasandi M. 2021. Landslide monitoring and the inventory map validation by ensemble DInSAR processing of ASAR and PALSAR images (case study: doab-Samsami Basin in Chaharmahal and Bakhtiari Province, Iran). Geotech Geol Eng. 39(2):1201–1222. doi: 10.1007/s10706-020-01554-5.
  • Shukla DP, Dubey CS, Ningreichon AS, Singh RP, Mishra BK, Singh SK. 2014. GIS-based morpho-tectonic studies of Alaknanda river basin: a precursor for hazard zonation. Nat Hazards. 71(3):1433–1452. doi: 10.1007/s11069-013-0953-y.
  • Sica F, Pulella A, Nannini M, Pinheiro M, Rizzoli P. 2019. Repeat-pass SAR interferometry for land cover classification: a methodology using Sentinel-1 Short-Time-Series. Remote Sens Environ. 232:111277. doi: 10.1016/j.rse.2019.111277.
  • Singh A, Ashuli A, Niraj KC, Dhiman N, Dubey CS, Shukla DP. 2023. Evaluating causative factors for landslide susceptibility along the Imphal-Jiribam railway corridor in the North-Eastern part of India using a GIS-based statistical approach. Environ Sci Pollut Res. 1–18. doi: 10.1007/s11356-023-28966-z.
  • Singh A, Chhetri NK, Nitesh, Gupta SK, Shukla DP. (2023). Strategies for sampling pseudo-absences of landslide locations for landslide susceptibility mapping in complex mountainous terrain of Northwest Himalaya.Bull Eng Geol Environ, 82(8):1–21. doi: 10.1007/s10064-023-03333-x.
  • Singh D, Singh AK, Patel RP, Singh R, Singh RP, Veenadhari B, Mukherjee M. 2008. Thunderstorms, lightning, sprites and magnetospheric whistler-mode radio waves. Surv Geophys. 29(6):499–551. doi: 10.1007/s10712-008-9053-z.
  • Singh N, Gupta SK, Shukla DP. 2020. Analysis of landslide reactivation using satellite data: a case study of Kotrupi Landslide, Mandi, Himachal Pradesh, India. Int Arch Photogramm Remote Sens Spatial Inf Sci. XLII-3/W11(3/W11):137–142. doi: 10.5194/isprs-archives-XLII-3-W11-137-2020.
  • Solari L, Del Soldato M, Raspini F, Barra A, Bianchini S, Confuorto P, Casagli N, Crosetto M. 2020. Review of satellite interferometry for landslide detection in Italy. Remote Sens. 12(8):1351. doi: 10.3390/rs12081351.
  • Suresh D, Yarrakula K. 2020. InSAR based deformation mapping of earthquake using Sentinel 1A imagery. Geocarto Int. 35(5):559–568. doi: 10.1080/10106049.2018.1544289.
  • Tzouvaras M, Danezis C, Hadjimitsis DG. 2020. Small scale landslide detection using Sentinel-1 interferometric SAR coherence. Remote Sens. 12(10):1560. doi: 10.3390/rs12101560.
  • Van Westen CJ, Castellanos E, Kuriakose SL. 2008. Spatial data for landslide susceptibility, hazard, and vulnerability assessment: an overview. Eng Geol. 102(3-4):112–131. doi: 10.1016/j.enggeo.2008.03.010.
  • Verhoest NE, Lievens H, Wagner W, Álvarez-Mozos J, Moran MS, Mattia F. 2008. On the soil roughness parameterization problem in soil moisture retrieval of bare surfaces from synthetic aperture radar. Sensors. 8(7):4213–4248. doi: 10.3390/s8074213.
  • Wang G, Xie M, Chai X, Wang L, Dong C. 2013. DInSAR-based landslide location and monitoring at Wudongde hydropower reservoir in China. Environ Earth Sci. 69(8):2763–2777. doi: 10.1007/s12665-012-2097-x.
  • Wasowski J, Bovenga F. 2014. Investigating landslides and unstable slopes with satellite multi temporal interferometry: current issues and future perspectives. Eng Geol. 174:103–138. doi: 10.1016/j.enggeo.2014.03.003.
  • Wegmuller U, Werner CL. 1995. SAR interferometric signatures of forest. IEEE Trans Geosci Remote Sens. 33(5):1153–1161. doi: 10.1109/36.469479.
  • Zhao C, Lu Z. 2018. Remote sensing of landslides—a review. Remote Sens. 10(2):279. doi: 10.3390/rs10020279.
  • Zhou X, Chang NB, Li S. 2009. Applications of SAR interferometry in earth and environmental science research. Sensors. 9(3):1876–1912. doi: 10.3390/s90301876.
  • Zubair M, Haider Z, Khan SA, Nasir J. 2011. Atmospheric influences on satellite communications. Przeglad Elektrotechniczny. 87(5):261–264.