0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

DNN model reveals sharp decline in PM2.5 concentration in the Yangtze River Delta during COVID-19 lockdown and lift lockdown

, , , ORCID Icon, &
Article: 2378186 | Received 15 Apr 2024, Accepted 04 Jul 2024, Published online: 24 Jul 2024

References

  • Azeez EPA, Negi DP, Rani A, A P SK. 2021. The impact of COVID-19 on migrant women workers in India. Eurasian Geogr Econ. 62(1):93–112. doi: 10.1080/15387216.2020.1843513.
  • Betha R, Behera SN, Balasubramanian R. 2014. 2013 Southeast Asian smoke haze: fractionation of particulate-bound elements and associated health risk. J Environ Sci Technol. 48(8):4327–4335. doi: 10.1021/es405533d.
  • Carreño G, López CXA, Marchant CJM. 2022. Machine learning models to predict critical episodes of environmental pollution for PM2.5 and PM10 in Talca, Chile. J Atmos Chem. 10(3):373.
  • Chang Y, Du T, Song X, Wang W, Tian P, Guan X, Zhang N, Wang M, Guo Y, Shi J, et al. 2022. Changes in physical and chemical properties of urban atmospheric aerosols and ozone during the COVID-19 lockdown in a semi-arid region. J Atmos Environ. 287:119270. doi: 10.1016/j.atmosenv.2022.119270.
  • Chen B, You S, Ye Y, Fu Y, Ye Z, Deng J, Wang K, Hong Y. 2021a. An interpretable self-adaptive deep neural network for estimating daily spatially-continuous PM2.5 concentrations across China. Sci Total Environ. 768:144724. doi: 10.1016/j.scitotenv.2020.144724.
  • Chen X, Kong P, Jiang P, Wu Y. 2021b. Estimation of PM2.5 concentration using deep Bayesian model considering spatial multiscale. Remote Sens. 13(22):4545. doi: 10.3390/rs13224545.
  • Chen Y, Ebenstein A, Greenstone M, Li H. 2013. Evidence on the impact of sustained exposure to air pollution on life expectancy from China’s Huai River policy. Proc Natl Acad Sci USA. 110(32):12936–12941. doi: 10.1073/pnas.1300018110.
  • Cui L, Wang L, Singh RP, Lai Z, Jiang L, Yao R. 2018. Association analysis between spatiotemporal variation of vegetation greenness and precipitation/temperature in the Yangtze River Basin (China). Environ Sci Pollut Res Int. 25(22):21867–21878. doi: 10.1007/s11356-018-2340-4.
  • Cui L, Wang L, Qu S, Singh RP, Lai Z, Yao R. 2019. Spatiotemporal extremes of temperature and precipitation during 1960–2015 in the Yangtze River Basin (China) and impacts on vegetation dynamics. Theor Appl Climatol. 136(1-2):675–692. doi: 10.1007/s00704-018-2519-0.
  • Di Q, Kloog I, Koutrakis P, Lyapustin A, Wang Y, Schwartz J. 2016. Assessing PM2.5 exposures with high spatiotemporal resolution across the continental United States. Environ Sci Technol. 50(9):4712–4721. doi: 10.1021/acs.est.5b06121.
  • Fan W, Qin K, Cui Y, Li D, Bilal M. 2020. Estimation of hourly ground-level PM2.5 concentration based on Himawari-8 apparent reflectance. IEEE Trans Geosci Remote Sens. 59(1):1–10. doi: 10.1109/TGRS.2020.2990791.
  • Fujii T, Hayashi S, Hogg JC, Vincent R, Van Eeden SF. 2001. Particulate matter induces cytokine expression in human bronchial epithelial cells. Am J Respir Cell Mol Biol. 25(3):265–271. doi: 10.1165/ajrcmb.25.3.4445.
  • Fyfe JC, Kharin VV, Swart N, Flato GM, Sigmond M, Gillett NP. 2021. Quantifying the influence of short-term emission reductions on climate. Sci Adv. 7(10):eabf7133. doi: 10.1126/sciadv.abf7133.
  • Li Y, Xue Y, Guang J, She L, Chen G, Fan C. 2019. Hourly ground level PM 2.5 estimation for the Southeast of China based on Himawari-8 observation data. In IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium. IEEE. p. 7850–7853.
  • Hu X, Waller LA, Al-Hamdan MZ, Crosson WL, Estes MG, Estes SM, Quattrochi DA, Sarnat JA, Liu Y. 2013. Estimating ground-level PM2.5 concentrations in the southeastern US using geographically weighted regression. Environ Res. 121:1–10. doi: 10.1016/j.envres.2012.11.003.
  • Lee C, Lee K, Kim S, Yu J, Jeong S, Yeom J. 2021. Hourly ground-level PM2.5 estimation using geostationary satellite and reanalysis data via deep learning. Remote Sensing. 13(11):2121. doi: 10.3390/rs13112121.
  • Li T, Shen H, Yuan Q, Zhang X, Zhang L. 2017. Estimating ground-level PM2.5 by fusing satellite and station observations: a geo-intelligent deep learning approach. Geophys Res Lett. 44(23):11,985–11,993. doi: 10.1002/2017GL075710.
  • Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, Amann M, Anderson HR, Andrews KG, Aryee M, et al. 2012. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 380(9859):2224–2260. doi: 10.1016/S0140-6736(12)61766-8.
  • Liu W, Mao Y, Hu T, Shi M, Zhang J, Zhang Y, Kong S, Qi S, Xing X. 2022. Variation of pollution sources and health effects on air pollution before and during COVID-19 pandemic in Linfen, Fenwei Plain. Environ Res. 213:113719. doi: 10.1016/j.envres.2022.113719.
  • Lyapustin A, Wang Y, Laszlo I, Kahn R, Korkin S, Remer L, Levy R, Reid JS. 2011. Multiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm. J Geophys Res. 116 (3):1–15. doi: 10.1029/2010JD014986.
  • Lyapustin A, Wang Y, Laszlo I, Korkin S. 2012. Improved cloud and snow screening in MAIAC aerosol retrievals using spectral and spatial analysis. Atmos Meas Tech. 5(4):843–850. doi: 10.5194/amt-5-843-2012.
  • Ma X, Jia H. 2016. Particulate matter and gaseous pollutions in three megacities over China: situation and implication. J Appl Ecol. 140:476–494. doi: 10.1016/j.atmosenv.2016.06.008.
  • Ma X, Yan P, Zhao T, Jia X, Jiao J, Ma Q, Wu D, Shu Z, Sun X, Habtemicheal B. 2021. Evaluations of surface PM10 concentration and chemical compositions in MERRA-2 aerosol reanalysis over Central and Eastern China. J Remote Sens. 13(7):1317. doi: 10.3390/rs13071317.
  • Ma Z, Hu X, Sayer AM, Levy R, Zhang Q, Xue Y, Tong S, Bi J, Huang L, Liu Y. 2016. Satellite-based spatiotemporal trends in PM2.5 concentrations: China, 2004–2013. Environ Health Perspect. 124(2):184–192. doi: 10.1289/ehp.1409481.
  • Mahowald N. 2011. Aerosol indirect effect on biogeochemical cycles and climate. Science. 334(6057):794–796. doi: 10.1126/science.1207374.
  • Misra P, Takigawa M, Khatri P, Dhaka SK, Dimri AP, Yamaji K, Kajino M, Takeuchi W, Imasu R, Nitta K, et al. 2021. Nitrogen oxides concentration and emission change detection during COVID-19 restrictions in North India. Sci Rep. 11(1):9800 10.1038/s41598-021-87673-2.PMC:33963208
  • Petitjean F, Inglada J, Gancarski P. 2014. Assessing the quality of temporal high-resolution classifications with low-resolution satellite image time series. IEEE J Sel Top Appl Earth Obs Remote Sens. 7(7):2693–2712.
  • Renhe Z, Qiang LI, Ruonan Z. 2014. Meteorological conditions for the persistent severe fog and haze event over eastern China in January 2013. Sci China Earth Sci. 57(1):10.
  • Sharma M, Singh RP, Kumar R. 2016. Dynamical characteristics of atmospheric aerosols over IG region. In Proceedings of the Remote Sensing of the Atmosphere, Clouds, and Precipitation VI. p. 98761B.
  • Shen H, Li T, Yuan Q, Zhang L. 2018. Estimating regional ground-level PM2.5 directly from satellite top-of-atmosphere reflectance using deep belief networks. J Geophys Res. 123(24):13,875–13,886.
  • Shtein A, Kloog I, Schwartz J, Silibello C, Michelozzi P, Gariazzo C, Viegi G, Forastiere F, Karnieli A, Just AC, et al. 2019. Estimating daily PM2.5 and PM10 over Italy using an ensemble model. Environ Sci Technol. 54(1):120–128. doi: 10.1021/acs.est.9b04279.
  • Su Z, Lin L, Chen Y, Hu H. 2022. Understanding the distribution and drivers of PM2.5 concentrations in the Yangtze River Delta from 2015 to 2020 using random forest regression. Environ Manag. 194(4):284.
  • Tang Y, Deng R, Li Jun, Liang Y, Xiong L, Liu Y, Zhang R, Hua Z. 2021. Estimation of Ultrahigh Resolution PM2.5 Mass Concentrations Based on Mie Scattering Theory by Using Landsat8 OLI Images over Pearl River Delta. Remote Sensing. 13(13):2463 doi: 10.3390/rs13132463.
  • Tao J, Gao J, Zhang L, Zhang R, Che H, Zhang Z, Lin Z, Jing J, Cao J, Hsu S-C. 2014. PM2.5 pollution in a megacity of southwest China: source apportionment and implication. Atmos Chem Phys. 14(16):8679–8699. doi: 10.5194/acp-14-8679-2014.
  • Van Zyl TL, Celik T. 2021. Did we produce more waste during the COVID-19 lockdowns? A remote sensing approach to landfill change analysis. IEEE J Sel Top Appl Earth Observations Remote Sens. 14:7349–7358. doi: 10.1109/JSTARS.2021.3097446.
  • Wang M, Cao C, Li G, Singh RP. 2015. Analysis of a severe prolonged regional haze episode in the Yangtze River Delta, China. Atmos Environ. 102:112–121. doi: 10.1016/j.atmosenv.2014.11.038.
  • Wei J, Li Z, Lyapustin A, Sun L, Peng Y, Xue W, Su T, Cribb M. 2021. Reconstructing 1-km-resolution high-quality PM2.5 data records from 2000 to 2018 in China: spatiotemporal variations and policy implications. Remote Sens Environ. 252(1):112136. doi: 10.1016/j.rse.2020.112136.
  • Xie P, Liu X, Liu Z, Li T, Zhong L, Xiang Y. 2011. Human health impact of exposure to airborne particulate matter in Pearl River Delta, China. Water Air Soil Pollut. 215(1-4):349–363. doi: 10.1007/s11270-010-0483-0.
  • Xie Y, Wilson AM. 2020. Change point estimation of deciduous forest land surface phenology. Remote Sens Environ. 240:111698. doi: 10.1016/j.rse.2020.111698.
  • Xue T, Zheng Y, Geng G, Zheng B, Jiang X, Zhang Q, He K. 2017. Fusing observational, satellite remote sensing and air quality model simulated data to estimate spatiotemporal variations of PM2.5 exposure in China. J Remote Sens. 9(3):221. doi: 10.3390/rs9030221.
  • You W, Zang Z, Pan X, Zhang L, Chen D. 2015. Estimating PM2.5 in Xi’an, China using aerosol optical depth: a comparison between the MODIS and MISR retrieval models. Sci Total Environ. 505:1156–1165. doi: 10.1016/j.scitotenv.2014.11.024.
  • Zhang R, Jing J, Tao J, Hsu S-C, Wang G, Cao J, Lee CSL, Zhu L, Chen Z, Zhao Y, et al. 2013. Chemical characterization and source apportionment of PM2.5 in Beijing: seasonal perspective. Atmos Chem Phys. 13(14):7053–7074. doi: 10.5194/acp-13-7053-2013.
  • Zhang T, Zhu Z, Gong W, Zhu Z, Sun K, Wang L, Huang Y, Mao F, Shen H, Li Z, et al. 2018. Estimation of ultrahigh resolution PM2.5 concentrations in urban areas using 160 m Gaofen-1 AOD retrievals. Remote Sens Environ. 216:91–104. doi: 10.1016/j.rse.2018.06.030.