528
Views
9
CrossRef citations to date
0
Altmetric
Review Article

Remote sensing approaches for land use and land surface temperature assessment: a review of methods

Pages 188-210 | Received 02 Dec 2016, Accepted 22 Feb 2017, Published online: 20 Mar 2017

References

  • Ahmad, F., 2012. A review of remote sensing data change detection: comparison of faisalabad and multan districts, Punjab Province, Pakistan. Journal of Geography and Regional Planning, 5 (9), 236-251.
  • Akgün, A., Eronat, A.H., and Türk, N., 2004. Comparing different satellite image classification methods: an application in Ayvalik district, Western Turkey. In: The 4th International Congress for Photogrammetry and Remote Sensing. Istanbul: Cartesia.
  • Akgn A., Eronat A.H. and Trk N. (2004). Comparing different satellite image classification methods: an application in Ayvalik district, Western Turkey. In: ISPRS Congress Istanbul 2004, Proceedings of Commission IV. 1091–1097
  • Almutairi, A. and Warner, T.A., 2010. Change detection accuracy and image properties: a study using simulated data. Remote Sensing, 2, 1508–1529. doi:10.3390/rs2061508
  • An, N., Hemmati, S., and Cui, Y., 2017. Numerical analysis of soil volumetric water content and temperature variations in an embankment due to soil-atmosphere interaction. Computers and Geotechnics, 83, 40–51. doi:10.1016/j.compgeo.2016.10.010
  • Anderson, M.C., et al., 2012. Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources. Remote Sensing of Environment, 122, 50–65. doi:10.1016/j.rse.2011.08.025
  • Angiuli, E. and Trianni, G., 2014. Urban mapping in Landsat images based on normalized difference spectral vector. IEEE Geoscience and Remote Sensing Letters, 11, 661–665. doi:10.1109/LGRS.2013.2274327
  • Aplin, P., 2016. Using remote sensing data. In: N. Clifford, et al., eds.. Key methods in geography. London: Sage.
  • Avitabile, V., et al., 2012. Capabilities and limitations of Landsat and land cover data for aboveground woody biomass estimation of Uganda. Remote Sensing of Environment, 117, 366–380. doi:10.1016/j.rse.2011.10.012
  • Ayanlade, A., 2015. Remote sensing of environmental change in the Niger Delta. Nigeria: King’s College London.
  • Ayanlade, A., 2016a. Landuse change within Okomu and Gilli-Gilli Forest Reserves, south-western Nigeria: its climatic and societal implications. Tropical Ecology, 57, 193–203.
  • Ayanlade, A., 2016b. Seasonality in the daytime and night-time intensity of land surface temperature in a tropical city area. Science of the Total Environment, 557, 415–424. doi:10.1016/j.scitotenv.2016.03.027
  • Ayanlade, A., 2016c. Variation in diurnal and seasonal urban land surface temperature: landuse change impacts assessment over Lagos metropolitan city. Modeling Earth Systems and Environment, 2, 193. doi:10.1007/s40808-016-0238-z
  • Ayanlade, A. and Drake, N., 2016. Forest loss in different ecological zones of the Niger Delta, Nigeria: evidence from remote sensing. GeoJournal, 81, 717–735. doi:10.1007/s10708-015-9658-y
  • Ayanlade, A. and Jegede, O., 2015. Evaluation of the intensity of the daytime surface urban heat island: how can remote sensing help? International Journal of Image and Data Fusion, 6, 348–365. doi:10.1080/19479832.2014.985618
  • Ayanlade, A. and Proske, U., 2016. Assessing wetland degradation and loss of ecosystem services in the Niger Delta, Nigeria. Marine and Freshwater Research, 67, 828–836. doi:10.1071/MF15066
  • Balsamo, G., et al., 2015. ERA-Interim/Land: a global land surface reanalysis data set. Hydrology and Earth System Sciences, 19, 389–407. doi:10.5194/hess-19-389-2015
  • Barry, R.G. and Blanken, P.D., 2016. Microclimate and local climate. UK: Cambridge University Press.
  • Bhatta, B., 2010. Analysis of urban growth and sprawl from remote sensing data. UK: Springer Science & Business Media.
  • Boakye, E., et al., 2008. Landsat images for assessment of the impact of land use and land cover changes on the Barekese catchment in Ghana. European Journal of Scientific Research, 22, 269–278.
  • Brown, P.T., et al., 2016. Unforced surface air temperature variability and its contrasting relationship with the anomalous TOA energy flux at local and global spatial scales. Journal of Climate, 29, 925–940. doi:10.1175/JCLI-D-15-0384.1
  • Campbell, J.B. and Wynne, R.H., 2011. Introduction to remote sensing. New York: Guilford Press.
  • Chan, J.C.W., Chan, K.P., and Yeh, A., 2001. Detecting the nature of change in an urban environment: a comparison of machine learning algorithms. Photogrammetric Engineering And Remote Sensing, 67, 213–225.
  • Chen, Y.-C., et al., 2017. Does urbanization increase diurnal land surface temperature variation? Evidence and implications. Landscape and Urban Planning, 157, 247–258. doi:10.1016/j.landurbplan.2016.06.014
  • Christidis, N., et al., 2013. The role of land use change in the recent warming of daily extreme temperatures. Geophysical Research Letters, 40, 589–594. doi:10.1002/grl.50159
  • Ck, U., et al., 2016. Recent changes on land use/land cover over Indian region and its impact on the weather prediction using unified model. Atmospheric Science Letters, 17, 294–300. doi:10.1002/asl.2016.17.issue-4
  • Collins, J. B., and Woodcock, C. E., 1996. An assessment of several linear change detection techniques for mapping forest mortality using multi-temporal landsat tm data. Remote Sensing of Environment, 56, 66–77. doi:10.1016/0034-4257(95)00233-2
  • Connors, J.P., Galletti, C.S., and Chow, W.T., 2013. Landscape configuration and urban heat island effects: assessing the relationship between landscape characteristics and land surface temperature in Phoenix, Arizona. Landscape Ecology, 28, 271–283. doi:10.1007/s10980-012-9833-1
  • Corrêa, J.A.D.J., et al., 2016. Remote sensing applied to the detection of changes in land use and surface temperature in the Mojuí River watershed. Journal of Hyperspectral Remote Sensing, 6, 250–261. doi:10.5935/2237-2202.20160025
  • Defries, R. and Belward, A., 2000. Global and regional land cover characterization from satellite data: an introduction to the special issue. International Journal of Remote Sensing, 21, 1083–1092. doi:10.1080/014311600210083
  • Drescher, J., et al., 2016. Ecological and socio-economic functions across tropical land use systems after rainforest conversion. Phil Transactions R Social B, 371, 20150275. doi:10.1098/rstb.2015.0275
  • Dugord, P.-A., et al., 2014. Land use patterns, temperature distribution, and potential heat stress risk–the case study Berlin, Germany. Computers, Environment and Urban Systems, 48, 86–98. doi:10.1016/j.compenvurbsys.2014.07.005
  • Eberenz, J., et al., 2015. Consistent forest change maps 1981–2000 from the AVHRR time series: case studies for South America and Indonesia. In: Analysis of Multitemporal Remote Sensing Images (Multi-Temp), 2015 8th International Workshop on the. IEEE, 1–4, 75-89.
  • Elhag, M. and Boteva, S., 2016. Mediterranean land use and land cover classification assessment using high spatial resolution data. In: IOP Conference Series: Earth and Environmental Science. IOP Publishing, 042032. 10.1088/1755-1315/44/4/042032
  • Ellis, E.A. and Porter-Bolland, L., 2008. Is community-based forest management more effective than protected areas? A comparison of land use/land cover change in two neighboring study areas of the Central Yucatan Peninsula, Mexico. Forest Ecology and Management, 256, 1971–1983. doi:10.1016/j.foreco.2008.07.036
  • Estes, A.B., et al. 2012. Land-cover change and human population trends in the greater serengeti ecosystem from 1984–2003. Biological Conservation, 147, 255–263.
  • Estoque, R.C., Murayama, Y., and Myint, S.W., 2017. Effects of landscape composition and pattern on land surface temperature: an urban heat island study in the megacities of Southeast Asia. Science of the Total Environment, 577, 349–359. doi:10.1016/j.scitotenv.2016.10.195
  • Foody, G., 2003. Remote sensing of tropical forest environments: towards the monitoring of environmental resources for sustainable development. International Journal of Remote Sensing, 24, 4035–4046. doi:10.1080/0143116031000103853
  • Foody, G.M. and Mathur, A., 2004. A relative evaluation of multiclass image classification by support vector machines. IEEE Transactions on Geoscience and Remote Sensing, 42, 1335–1343. doi:10.1109/TGRS.2004.827257
  • Fu, P. and Weng, Q., 2016. A time series analysis of urbanization induced land use and land cover change and its impact on land surface temperature with Landsat imagery. Remote Sensing of Environment, 175, 205–214. doi:10.1016/j.rse.2015.12.040
  • Fung, T., 1990. An assessment of TM imagery for land-cover change detection. IEEE Transactions on Geoscience and Remote Sensing, 28, 681–684. doi:10.1109/TGRS.1990.572980
  • Gao, J. and Liu, Y., 2010. Determination of land degradation causes in Tongyu County, Northeast China via land cover change detection. International Journal of Applied Earth Observation and Geoinformation, 12, 9–16. doi:10.1016/j.jag.2009.08.003
  • Geist, H.J. and Lambin, E.F., 2001. What drives tropical deforestation. LUCC Report Series, 4, 116.
  • Godinho, S., et al., 2016. Assessing the role of Mediterranean evergreen oaks canopy cover in land surface albedo and temperature using a remote sensing-based approach. Applied Geography, 74, 84–94. doi:10.1016/j.apgeog.2016.07.004
  • Gong, W., et al., 2016. Comparison to supervised classification modelling in land use cover using Landsat 8 OLI data: an example in Miyun county of North China. Nature Environment and Pollution Technology, 15, 243.
  • Guo, Q., et al., 2007. An object-based classification approach in mapping tree mortality using high spatial resolution imagery. Giscience & Remote Sensing, 44, 24–47. doi:10.2747/1548-1603.44.1.24
  • Hansen, M.C. and Loveland, T.R., 2012. A review of large area monitoring of land cover change using Landsat data. Remote Sensing of Environment, 122, 66–74. doi:10.1016/j.rse.2011.08.024
  • Hay, G.J. and Castilla, G., 2008. Geographic object-based image analysis (GEOBIA): a new name for a new discipline. Object-Based Image Analysis, 75–89. USA: Springer. doi:10.1007/978-3-540-77058-9_4
  • He, Y., Lee, E., and Warner, T.A., 2016. Continuous annual land use and land cover mapping using AVHRR GIMMS NDVI3g and MODIS MCD12Q1 datasets over China from 1982 to 2012. In: Geoscience and Remote Sensing Symposium (IGARSS), 2016 IEEE International. USA: IEEE, 5470–5472.
  • Huang, C., Davis, L., and Townshend, J., 2002. An assessment of support vector machines for land cover classification. International Journal of Remote Sensing, 23, 725–749. doi:10.1080/01431160110040323
  • Hughes, S.J., et al., 2016. A stochastic dynamic model to assess land use change scenarios on the ecological status of fluvial water bodies under the Water Framework Directive. Science of the Total Environment, 565, 427–439. doi:10.1016/j.scitotenv.2016.04.153
  • Hüner, N.P., et al., 2016. Photosynthetic acclimation, vernalization, crop productivity and ‘the grand design of photosynthesis’. Journal of Plant Physiology, 203, 29–43. doi:10.1016/j.jplph.2016.04.006
  • Hussain, M., et al., 2013. Change detection from remotely sensed images: from pixel-based to object-based approaches. ISPRS Journal of Photogrammetry and Remote Sensing, 80, 91–106. doi:10.1016/j.isprsjprs.2013.03.006
  • Jeyanthi, P., et al., 2010. Image classification by K-means clustering. Advances in Computational Sciences and Technology, 3 (1), 1–8.
  • Jeyanthi, P., and Kumar, V.J.S., 2010. Image classification by k-means clustering. Advances in Computational Sciences and Technology, 3 (1), 1–8.
  • Joshi, N., et al., 2016. A review of the application of optical and radar remote sensing data fusion to land use mapping and monitoring. Remote Sensing, 8, 70. doi:10.3390/rs8010070
  • Kanianska, R., et al., 2014. Land-use and land-cover changes in rural areas during different political systems: a case study of Slovakia from 1782 to 2006. Land Use Policy, 36, 554–566. doi:10.1016/j.landusepol.2013.09.018
  • Kloog, I., et al., 2014. Predicting spatiotemporal mean air temperature using MODIS satellite surface temperature measurements across the Northeastern USA. Remote Sensing of Environment, 150, 132–139. doi:10.1016/j.rse.2014.04.024
  • Kovalskyy, V. and Roy, D., 2013. The global availability of Landsat 5 TM and Landsat 7 ETM+ land surface observations and implications for global 30m Landsat data product generation. Remote Sensing of Environment, 130, 280–293. doi:10.1016/j.rse.2012.12.003
  • Kuang, W., et al., 2015. Quantifying the heat flux regulation of metropolitan land use/land cover components by coupling remote sensing modeling with in situ measurement. Journal of Geophysical Research: Atmospheres, 120, 113–130.
  • Kussul, N., et al., 2016. Along the season crop classification in Ukraine based on time series of optical and SAR images using ensemble of neural network classifiers. In: Geoscience and Remote Sensing Symposium (IGARSS), 2016 IEEE International. USA: IEEE, 7145–7148.
  • Lambin, E.F., 1996. Change detection at multiple temporal scales: seasonal and annual variations in landscape variables. Photogrammetric Engineering and Remote Sensing, 62, 931–938.
  • Lambin, E.F., et al., 2001. The causes of land-use and land-cover change: moving beyond the myths. Global Environmental Change, 11, 261–269. doi:10.1016/S0959-3780(01)00007-3
  • Lambin, E.F., Geist, H.J., and Lepers, E., 2003. Dynamics of land-use and land-cover change in tropical regions. Annual Review of Environment and Resources, 28 (1), 205-241. doi: 10.1146/annurev.energy.28.050302.105459
  • Lambin, E.F. and Strahler, A.H., 1994. Indicators of land-cover change for change-vector analysis in multitemporal space at coarse spatial scales. International Journal of Remote Sensing, 15, 2099–2119. doi:10.1080/01431169408954230
  • Lambin, E.F, and Strahler, A.H., 1994b. Change-vector analysis : a tool to detect and categorize land-cover change processes using high temporal-resolution satellite data. Remote Sensing of Environment, 48, 231–244.
  • Lasanta, T. and Vicente-Serrano, S.M., 2012. Complex land cover change processes in semiarid Mediterranean regions: an approach using Landsat images in northeast Spain. Remote Sensing of Environment, 124, 1–14. doi:10.1016/j.rse.2012.04.023
  • Lawler, J.J., et al. 2014. Projected land-use change impacts on ecosystem services in the United States. Proceedings of the National Academy of Sciences, 111, 7492–7497.
  • Leng, P., et al., 2016. A practical algorithm for estimating surface soil moisture using combined optical and thermal infrared data. International Journal of Applied Earth Observation and Geoinformation, 52, 338–348. doi:10.1016/j.jag.2016.07.004
  • Li, -J.-J., et al., 2009. Remote sensing evaluation of urban heat island and its spatial pattern of the Shanghai metropolitan area, China. Ecological Complexity, 6, 413–420. doi:10.1016/j.ecocom.2009.02.002
  • Li, M., et al., 2014. A review of remote sensing image classification techniques: the role of spatio-contextual information. European Journal of Remote Sensing, 47, 389–411. doi:10.5721/EuJRS20144723
  • Li, Z.-L., et al., 2013. Satellite-derived land surface temperature: current status and perspectives. Remote Sensing of Environment, 131, 14–37. doi:10.1016/j.rse.2012.12.008
  • Lillesand, T., Kiefer, R.W., and Chipman, J., 2014. Remote sensing and image interpretation. USA: John Wiley & Sons.
  • Liu, D. and Xia, F., 2010. Assessing object-based classification: advantages and limitations. Remote Sensing Letters, 1, 187–194. doi:10.1080/01431161003743173
  • Lu, D., et al., 2004. Change detection techniques. International Journal of Remote Sensing, 25, 2365–2401. doi:10.1080/0143116031000139863
  • Lu, D., et al., 2002. Change detection of successional and mature forests based on forest stand characteristics using multitemporal TM data in Altamira, Brazil. In XXII FIG International Congress, ACSM–ASPRS Annual Conference Proceedings, April, Washington, DC, pp. 19–26.
  • Lu, D. and Weng, Q., 2007. A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing, 28, 823–870. doi:10.1080/01431160600746456
  • Lu, Y., et al., 2016. Estimating surface turbulent heat fluxes from land surface temperature and soil moisture observations using the particle batch smoother. Water Resources Research, 52, 9086–9108. doi:10.1002/wrcr.v52.11
  • Macomber, S.A., and Woodcock, C.E., 1994. Mapping and monitoring conifer mortality using remote sensing in the lake tahoe basin. Remote Sensing of Environment, 50 (3), 255-266. doi:10.1016/0034-4257(94)90075-2
  • Mall, R.K., Gupta, A., and Sonkar, G., 2016. Effect of climate change on agricultural crops. Current Developments in Biotechnology and Bioengineering: Crop Modification, Nutrition, and Food Production, 23.
  • Martínez-Fernández, J., et al., 2016. Satellite soil moisture for agricultural drought monitoring: assessment of the SMOS derived Soil Water Deficit Index. Remote Sensing of Environment, 177, 277–286. doi:10.1016/j.rse.2016.02.064
  • Matricardi, E.A.T., et al. 2010. Assessment of tropical forest degradation by selective logging and fire using land sat imagery. Remote Sensing Of Environment, 114, 1117–1129.
  • Mccarthy, M.J. and Halls, J.N., 2014. Habitat mapping and change assessment of coastal environments: an examination of WorldView-2, QuickBird, and IKONOS satellite imagery and airborne LiDAR for mapping barrier island habitats. ISPRS International Journal of Geo-Information, 3, 297–325. doi:10.3390/ijgi3010297
  • Mertens, B. and Lambin, E.F., 2000. Land‐cover‐change trajectories in southern Cameroon. Annals of the Association of American Geographers, 90, 467–494. doi:10.1111/0004-5608.00205
  • Morisette, J.T., Khorram, S., and Mace, T., 1999. Land-cover change detection enhanced with generalized linear models. International Journal of Remote Sensing, 20 (14), 2703-2721 doi:10.1080/014311699211750
  • Morton, D., et al. 2011. Final report for LCM2007 - the new UK land cover map. Countryside Survey Technical Report No 11/07. NERC/Centre for Ecology & Hydrology, 112pp. (CEH Project Number: C03259).
  • Mountrakis, G., Im, J., and Ogole, C., 2011. Support vector machines in remote sensing: a review. ISPRS Journal of Photogrammetry and Remote Sensing, 66, 247–259. doi:10.1016/j.isprsjprs.2010.11.001
  • Otukei, J.R. and Blaschke, T., 2010. Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms. International Journal of Applied Earth Observation and Geoinformation, 12, S27–S31. doi:10.1016/j.jag.2009.11.002
  • Ouyang, W., et al., 2010. Vegetation response to 30 years hydropower cascade exploitation in upper stream of Yellow River. Communications in Nonlinear Science and Numerical Simulation, 15, 1928–1941. doi:10.1016/j.cnsns.2009.07.021
  • Oyler, J.W., et al., 2015. Creating a topoclimatic daily air temperature dataset for the conterminous United States using homogenized station data and remotely sensed land skin temperature. International Journal of Climatology, 35, 2258–2279. doi:10.1002/joc.2015.35.issue-9
  • Patarasuk, R., and Binford, M.W., 2012. Longitudinal analysis of the road network development and land-cover change in Lop Buri province, Thailand, 1989-2006. Applied Geography, 32, 228-239. doi:10.1016/j.apgeog.2011.05.009
  • Peled, A. and Gilichinsky, M., 2013. GIS-driven classification of land use using IKONOS data and a core national spatial information database. Applied Geomatics, 5, 109–117. doi:10.1007/s12518-013-0100-1
  • Pelorosso, R., Leone, A., and Boccia, L., 2009. Land cover and land use change in the Italian central Apennines: a comparison of assessment methods. Applied Geography, 29, 35–48. doi:10.1016/j.apgeog.2008.07.003
  • Perminova, T., et al., 2016. Methods for land use impact assessment: a review. Environmental Impact Assessment Review, 60, 64–74. doi:10.1016/j.eiar.2016.02.002
  • Perumal, K. and Bhaskaran, R., 2010. Supervised classification performance of multispectral images. Journal of Computing, 2 (2), 124-129.
  • Petropoulos, G.P., Vadrevu, K.P., and Kalaitzidis, C., 2013. Spectral angle mapper and object-based classification combined with hyperspectral remote sensing imagery for obtaining land use/cover mapping in a Mediterranean region. Geocarto International, 28, 114–129. doi:10.1080/10106049.2012.668950
  • Popp, A., et al., 2017. Land-use futures in the shared socio-economic pathways. Global Environmental Change, 42, 331-345.
  • Qiao, Z., Tian, G., and Xiao, L., 2013. Diurnal and seasonal impacts of urbanization on the urban thermal environment: a case study of Beijing using MODIS data. ISPRS Journal of Photogrammetry and Remote Sensing, 85, 93–101. doi:10.1016/j.isprsjprs.2013.08.010
  • Rotem-Mindali, O., et al., 2015. The role of local land-use on the urban heat island effect of Tel Aviv as assessed from satellite remote sensing. Applied Geography, 56, 145–153. doi:10.1016/j.apgeog.2014.11.023
  • Salazar, A., et al., 2016. Deforestation changes land–atmosphere interactions across South American biomes. Global and Planetary Change, 139, 97–108. doi:10.1016/j.gloplacha.2016.01.004
  • Schowengerdt, R.A., 2006. Remote sensing: models and methods for image processing. San Diego, CA: Academic press.
  • Schwert, B., et al., 2013. A comparison of support vector machines and manual change detection for land-cover map updating in Massachusetts, USA. Remote Sensing Letters, 4, 882–890. doi:10.1080/2150704X.2013.809497
  • Seto, K.C., et al., 2002. Monitoring land-use change in the Pearl River Delta using Landsat TM. International Journal of Remote Sensing, 23, 1985–2004. doi:10.1080/01431160110075532
  • Shen, Y.J., et al., 2016. Spatial‐temporal variation of near‐surface temperature lapse rates over the Tianshan Mountains, central Asia. Journal of Geophysical Research: Atmospheres, 121 (23), 14006-14017.
  • Singh, A. (1989). Digital change detection techniques using remotely-sensed data. International Journal of Remote Sensing, 10, 989-1003.
  • Soudani, K., et al., 2006. Comparative analysis of IKONOS, SPOT, and ETM+ data for leaf area index estimation in temperate coniferous and deciduous forest stands. Remote Sensing of Environment, 102, 161–175. doi:10.1016/j.rse.2006.02.004
  • Sunar, F., 1998. An analysis of changes in a multi-date data set: a case study in the Ikitelli area, Istanbul, Turkey. International Journal of Remote Sensing, 19, 225–235. doi:10.1080/014311698216215
  • Tuia, D., et al., 2009. Classification of very high spatial resolution imagery using mathematical morphology and support vector machines. IEEE Transactions on Geoscience and Remote Sensing, 47, 3866–3879. doi:10.1109/TGRS.2009.2027895
  • Turker, M. and Arikan, M., 2005. Sequential masking classification of multi‐temporal Landsat7 ETM+ images for field‐based crop mapping in Karacabey, Turkey. International Journal of Remote Sensing, 26, 3813–3830. doi:10.1080/01431160500166391
  • Vindel, J.M., et al., 2016. Temporal variability patterns in solar radiation estimations. Journal of Atmospheric and Solar-Terrestrial Physics, 143, 1–7. doi:10.1016/j.jastp.2016.03.004
  • Wang, F., 1999. A knowledge-based vision system for detecting land changes at urban fringes. IEEE Transactions on Geoscience and Remote Sensing, 31 (1), 136-145. doi:10.1109/36.210454
  • Wang, S., et al., 2016. Numerical study on the stomatal responses to dry-hot wind episodes and its effects on land-atmosphere interactions. Plos One, 11, e0162852. doi:10.1371/journal.pone.0162852
  • Wang, S.-Y., Liu, J.-S., and Ma, T.-B., 2010. Dynamics and changes in spatial patterns of land use in Yellow River Basin, China. Land Use Policy, 27, 313–323. doi:10.1016/j.landusepol.2009.04.002
  • Wang, Y., et al., 2009. Remote sensing of land-cover change and landscape context of the National Parks: a case study of the northeast temperate network. Remote Sensing of Environment, 113, 1453–1461. doi:10.1016/j.rse.2008.09.017
  • Weng, Q., 2002. Land use change analysis in the Zhujiang Delta of China using satellite remote sensing, GIS and stochastic modelling. Journal of Environmental Management, 64, 273–284. doi:10.1006/jema.2001.0509
  • Wu, H., et al., 2014. Assessing the effects of land use spatial structure on urban heat islands using HJ-1B remote sensing imagery in Wuhan, China. International Journal of Applied Earth Observation and Geoinformation, 32, 67–78. doi:10.1016/j.jag.2014.03.019
  • Xiang, M., et al., 2005. A parallelepiped multispectral image classifier using genetic algorithms. In: Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS’05. USA: IEEE, 4 pp.
  • Xiang, S., Nie, F., and Zhang, C., 2008. Learning a mahalanobis distance metric for data clustering and classification. Pattern Recognition, 41, 3600–3612. doi:10.1016/j.patcog.2008.05.018
  • Xie, Z., Xu, X., and Yan, L., 2010. Analyzing qualitative and quantitative changes in coastal wetland associated to the effects of natural and anthropogenic factors in a part of Tianjin, China. Estuarine, Coastal and Shelf Science, 86, 379–386. doi:10.1016/j.ecss.2009.03.040
  • Xiuwan, C., 2002. Using remote sensing and GIS to analyse land cover change and its impacts on regional sustainable development. International Journal of Remote Sensing, 23, 107–124. doi:10.1080/01431160010007051
  • Youssef, A.M., Pourghasemi, H.R., Pourtaghi, Z.S., and Al-Katheeri, M.M., 2016. Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides, 13 (5), 839–856. doi:10.1080/19475705.2014.933130
  • Yu, L., Shi, Y., and Gong, P., 2015. Land cover mapping and data availability in critical terrestrial ecoregions: a global perspective with Landsat thematic mapper and enhanced thematic mapper plus data. Biological Conservation, 190, 34–42. doi:10.1016/j.biocon.2015.05.009
  • Yu, Q., et al., 2006. Object-based detailed vegetation classification with airborne high spatial resolution remote sensing imagery. Photogrammetric Engineering & Remote Sensing, 72, 799–811. doi:10.14358/PERS.72.7.799
  • Yuan, H., et al., 2015. Estimating forest fAPAR from multispectral Landsat-8 data using the invertible forest reflectance model INFORM. Remote Sensing, 7, 7425–7446. doi:10.3390/rs70607425
  • Yue, T.X., et al., 2002. A curve-theorem based approach for change detection and its application to yellow river delta. International Journal of Remote Sensing, 23 (11), 2283-2292.
  • Zareie, S., et al., 2016. Using Landsat thematic mapper (TM) sensor to detect change in land surface temperature in relation to land use change in Yazd, Iran. Solid Earth, 7, 1551. doi:10.5194/se-7-1551-2016
  • Zhang, Q., et al., 2002. Urban built-up land change detection with road density and spectral information from multi-temporal landsat TM data. International Journal of Remote Sensing, 23 (15), 3057-3078.
  • Zhang, Y., Balzter, H., and Wu, X., 2013. Spatial–temporal patterns of urban anthropogenic heat discharge in Fuzhou, China, observed from sensible heat flux using Landsat TM/ETM+ data. International Journal of Remote Sensing, 34, 1459–1477. doi:10.1080/01431161.2012.718465
  • Zhou, W., et al., 2014. Relationships between land cover and the surface urban heat island: seasonal variability and effects of spatial and thematic resolution of land cover data on predicting land surface temperatures. Landscape Ecology, 29, 153–167. doi:10.1007/s10980-013-9950-5
  • Zhou, W., Huang, G., and Cadenasso, M.L., 2011. Does spatial configuration matter? Understanding the effects of land cover pattern on land surface temperature in urban landscapes. Landscape and Urban Planning, 102, 54–63. doi:10.1016/j.landurbplan.2011.03.009
  • Zhu, W., et al., 2017. Retrievals of all-weather daytime air temperature from MODIS products. Remote Sensing of Environment, 189, 152–163. doi:10.1016/j.rse.2016.11.011

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.