454
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Estimating Leaf Area Index and biomass of sugarcane based on Gaussian process regression using Landsat 8 and Sentinel 1A observations

ORCID Icon, ORCID Icon & ORCID Icon
Pages 58-88 | Received 28 Oct 2021, Accepted 10 Mar 2022, Published online: 25 Mar 2022

References

  • Abebe, G., Tadesse, T., and Gessesse, B., 2022. Assimilation of leaf Area Index from multisource earth observation data into the WOFOST model for sugarcane yield estimation. International Journal of Remote Sensing, 43 (2), 698–720. doi:10.1080/01431161.2022.2027547
  • Alebele, Y., et al., 2020. Estimation of canopy biomass components in paddy rice from combined optical and SAR data using multi-target gaussian regressor stacking. Remote Sensing, 12 (16), 2564. doi:10.3390/rs12162564
  • Asner, G.P., Scurlock, J.M., and Hicke, J.A., 2003. Global synthesis of leaf area index observations: implications for ecological and remote sensing studies. Global Ecology and Biogeography, 12 (3), 191–205.
  • Attarzadeh, R., et al., 2018. Synergetic use of Sentinel-1 and Sentinel-2 data for soil moisture mapping at plot scale. Remote Sensing, 10 (8), 1285. doi:10.3390/rs10081285
  • Baghdadi, N., et al., 2009. Potential of SAR sensors, TerraSAR-X, ASAR/ENVISAT and PALSAR/ALOS for monitoring sugarcane crops on reunion Island. Remote Sensing of Environment, 113 (8), 1724–1738. doi:10.1016/j.rse.2009.04.005
  • Baghdadi, N., et al., 2010. Multitemporal observations of sugarcane by TerraSAR-X images. Sensors, 10 (10), 8899–8919. doi:10.3390/s101008899
  • Bastiaanssen, W.G., Molden, D.J., and Makin, I.W., 2000. Remote sensing for irrigated agriculture: examples from research and possible applications. Agricultural Water Management, 46 (2), 137–155. doi:10.1016/S0378-3774(00)00080-9
  • Campos-Taberner, M., et al., 2016. Multitemporal and multiresolution leaf area index retrieval for operational local rice crop monitoring. Remote Sensing of Environment, 187, 102–118. doi:10.1016/j.rse.2016.10.009.
  • Cho, M.A., et al., 2007. Estimation of green grass/herb biomass from airborne hyperspectral imagery using spectral indices and partial least squares regression. International Journal of Applied Earth Observation and Geoinformation, 9 (4), 414–424. doi:10.1016/j.jag.2007.02.001
  • Core Team, R., 2019. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
  • Degefa, S. and Saito, O., 2017. Assessing the impacts of large-scale agro-industrial sugarcane production on biodiversity: a case study of Wonji Shoa Sugar Estate, Ethiopia. Agriculture, 7 (12), 99. doi:10.3390/agriculture7120099
  • Dinka, M. O., Ndambuki, J. M., 2014a. Identifying the potential causes of waterlogging in irrigated agriculture: the case of the wonji‐shoa sugar cane plantation (Ethiopia). Irrigation and drainage, 63 (1), 80–92.
  • Dinka, M. O., Loiskandl, W., Ndambuki, J. M., 2014b. Status of groundwater table depth under long-term irrigation in Wonji Plain: Concerns for sustainability of Wonji-Shoa Sugar Estate, Upper Awash Valley, Ethiopia. Sustainable Agriculture Research.
  • Drosos, V.C. and Malesios, C., 2012. Measuring the accuracy and precision of the Garmin GPS positioning in forested areas: a case study in Taxiarchis-Vrastama university forest. Journal of Environmental Science and Engineering B, 1 , 566–576.
  • Dube, T. and Mutanga, O., 2015. Evaluating the utility of the medium-spatial resolution Landsat 8 multispectral sensor in quantifying aboveground biomass in uMgeni catchment, South Africa. ISPRS Journal of Photogrammetry and Remote Sensing, 101, 36–46. doi:10.1016/j.isprsjprs.2014.11.001
  • Elarab, M., et al., 2015. Estimating chlorophyll with thermal and broadband multispectral high resolution imagery from an unmanned aerial system using relevance vector machines for precision agriculture. International Journal of Applied Earth Observation and Geoinformation, 43, 32–42. doi:10.1016/j.jag.2015.03.017.
  • Fieuzal, R., Sicre, C.M., and Baup, F., 2017. Estimation of corn yield using multi-temporal optical and radar satellite data and artificial neural networks. International Journal of Applied Earth Observation and Geoinformation, 57, 14–23. doi:10.1016/j.jag.2016.12.011
  • Filipponi, F., 2019. Sentinel-1 GRD preprocessing workflow. In Multidisciplinary Digital Publishing Institute proceedings, 3rd International Electronic Conference on Remote Sensing, 22 May-5 June 2019. Vol. 18, Wang, Qi (MDPI). 11. doi:10.3390/ECRS-3-06201.
  • Fu, Y., et al., 2014. Winter wheat biomass estimation based on spectral indices, band depth analysis and partial least squares regression using hyperspectral measurements. Computers and Electronics in Agriculture, 100, 51–59. doi:10.1016/j.compag.2013.10.010
  • Gao, S., et al., 2013. Estimating the Leaf Area Index, height and biomass of maize using HJ-1 and RADARSAT-2. International Journal of Applied Earth Observation and Geoinformation, 24, 1–8. doi:10.1016/j.jag.2013.02.002.
  • Gewali, U.B., Monteiro, S.T., and Saber, E., 2019. Gaussian processes for vegetation parameter estimation from hyperspectral data with limited ground truth. Remote Sensing, 11 (13), 1614. doi:10.3390/rs11131614
  • Gill, M.K., et al., 2006. Soil moisture prediction using support vector machines. Journal of the American Water Resources Association, 42 (4), 1033–1046. doi:10.1111/j.1752-1688.2006.tb04512.x
  • Girma, M.M. and Awulachew, S.B., 2007. Irrigation practices in Ethiopia: characteristics of selected irrigation schemes. Colombo, Sri Lanka: International Water Management Institute. 80. (IWMI Working Paper 124).
  • Guo, M., et al., 2012. Assessment of global carbon dioxide concentration using MODIS and GOSAT data. Sensors, 12 (12), 16368–16389. doi:10.3390/s121216368
  • Han, D., et al., 2019. Crop water content of winter wheat revealed with Sentinel-1 and Sentinel-2 imagery. Sensors, 19 (18), 4013. doi:10.3390/s19184013
  • Hardin, P.J. and Jensen, R.R., 2007. The effect of urban leaf area on summertime urban surface kinetic temperatures: a Terre Haute case study. Urban Forestry & Urban Greening, 6 (2), 63–72. doi:10.1016/j.ufug.2007.01.005
  • Hosseini, M., et al., 2015. Estimation of Leaf Area Index (LAI) in corn and soybeans using multi-polarization C- and L-band radar data. Remote Sensing of Environment, 170, 77–89. doi:10.1016/j.rse.2015.09.002
  • Huang, J., et al., 2016. Assimilating a synthetic Kalman filter leaf area index series into the WOFOST model to improve regional winter wheat yield estimation. Agricultural and Forest Meteorology, 216, 188–202. doi:10.1016/j.agrformet.2015.10.013.
  • Hunsaker, D.J., et al., 2005. Cotton irrigation scheduling using remotely sensed and FAO-56 basal crop coefficients. Transactions of the ASAE, 48 (4), 1395–1407. doi:10.13031/2013.19197
  • Irons, J.R., Dwyer, J.L., and Barsi, J.A., 2012. The next Landsat satellite: the Landsat data continuity mission. Remote Sensing of Environment, 122, 11–21. doi:10.1016/j.rse.2011.08.026
  • Jin, X., et al., 2013. Estimation of wheat agronomic parameters using new spectral indices. PLoS One, 8 (8), e72736. doi:10.1371/journal.pone.0072736
  • Jin, X., et al., 2015. Combined multi-temporal optical and radar parameters for estimating LAI and biomass in winter wheat using HJ and RADARSAR-2 data. Remote Sensing, 7 (10), 13251–13272. doi:10.3390/rs71013251
  • Jin, X., et al., 2016. Estimation of winter wheat biomass and yield by combining the aquacrop model and field hyperspectral data. Remote Sensing, 8 (12), 972. doi:10.3390/rs8120972
  • Koppe, W., et al., 2012. Multi-temporal hyperspectral and radar remote sensing for estimating winter wheat biomass in the North China Plain. PFG, 3 (3), 281–298. doi:10.1127/1432-8364/2012/0117
  • Kross, A., et al., 2015. Assessment of rapid eye vegetation indices for estimation of leaf area index and biomass in corn and soybean crops. International Journal of Applied Earth Observation and Geoinformation, 34, 235–248. doi:10.1016/j.jag.2014.08.002
  • Kuhn, M., Coffey, C.S., and Muller, K.E., 2008. Caret package. Journal of Statistical Software, 28 (7), 1–26. doi:10.18637/jss.v028.i07.
  • Kumar, P., et al., 2017. Estimation of winter wheat crop growth parameters using time series Sentinel-1A SAR data. Geocarto International, 33 (9), 942–956. doi:10.1080/10106049.2017.1316781
  • Laurin, G.V., et al., 2016. Discrimination of tropical forest types, dominant species, and mapping of functional guilds by hyperspectral and simulated multispectral Sentinel-2 data. Remote Sensing ofEnvironment, 176, 163–176. doi:10.1016/j.rse.2016.01.017.
  • Lázaro-Gredilla, M., et al., 2013. Retrieval of biophysical parameters with heteroscedastic Gaussian processes. IEEE Geoscience and Remote Sensing Letters, 11 (4), 838–842. doi:10.1109/LGRS.2013.2279695
  • Li, F., et al., 2014. Reflectance estimation of canopy nitrogen content in winter wheat using optimised hyperspectral spectral indices and partial least squares regression. European Journal of Agronomy, 52, 198–209. doi:10.1016/j.eja.2013.09.006
  • Li, X., et al., 2016. Quantification winter wheat LAI with HJ-1CCD image features over multiple growing seasons. International Journal of Applied Earth Observation and Geoinformation, 44, 104–112. doi:10.1016/j.jag.2015.08.004.
  • Li, X., et al., 2021. Spatiotemporal dynamics in assimilated-LAI phenology and its impact on subtropical bamboo forest productivity. International Journal of Applied Earth Observation and Geoinformation, 96, 1–11.
  • Liang, S., Yi, Q., and Liu, J., 2015. Vegetation dynamics and responses to recent climate change in Xinjiang using leaf area index as an indicator. Ecological Indicators, 58, 64–76. doi:10.1016/j.ecolind.2015.05.036
  • Lin, H., et al., 2009. Monitoring sugarcane growth using ENVIS ASAR data. IEEE Transactions on Geoscience and Remote Sensing, 47 (8), 2572–2580. doi:10.1109/TGRS.2009.2015769
  • Liu, J., et al. 2010. Estimating crop stresses, aboveground dry biomass and yield of corn using multi-temporal optical data combined with a radiation use efficiency model. Remote Sensing of Environment, 114 (6), 1167–1177. doi:10.1016/j.rse.2010.01.004
  • Liu, Y., et al., 2018. Satellite-derived LAI products exhibit large discrepancies and can lead to substantial uncertainty in simulated carbon and water fluxes. Remote Sensing of Environment, 206, 174–188. doi:10.1016/j.rse.2017.12.024.
  • Liu, H.Q. and Huete, A.R., 1995. A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Transactions on Geoscience and Remote Sensing, 33 (2), 457–465. doi:10.1109/TGRS.1995.8746027.
  • Liu, J., Pattey, E., and Jégo, G., 2012. Assessment of vegetation indices for regional crop green LAI estimation from Landsat images over multiple growing seasons. Remote Sensing of Environment, 123, 347–358. doi:10.1016/j.rse.2012.04.002
  • Lu, D., 2006. The potential and challenge of remote sensing‐based biomass estimation. International Journal of Remote Sensing, 27 (7), 1297–1328. doi:10.1080/01431160500486732
  • Luedeling, E., et al. 2009. Remote sensing of spider mite damage in California peach orchards. International Journal of Applied Earth Observation and Geoinformation, 11 (4), 244–255. doi:10.1016/j.jag.2009.03.002
  • Luo, S., et al., 2017. Fusion of airborne LiDAR data and hyperspectral imagery for aboveground and belowground forest biomass estimation. Ecological Indicators, 73, 378–387. doi:10.1016/j.ecolind.2016.10.001.
  • Luo, P., Liao, J., and Shen, G., 2020. Combining spectral and texture features for estimating leaf area index and biomass of maize using sentinel-1/2, and landsat-8 Data. IEEE Access, 8, 53614–53626. doi:10.1109/ACCESS.2020.2981492
  • Mahlein, A.K., et al. 2012. Recent advances in sensing plant diseases for precision crop protection. European Journal of Plant Pathology, 133 (1), 197–209. doi:10.1007/s10658-011-9878-z
  • Mandal, D., et al., 2018. Crop biophysical parameters estimation with a multi-target inversion scheme using the Sentinel-1 SAR data. In IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium. 22-27 July 2018, Valencia, Spain: IEEE, 6611–6614.doi:10.1109/IGARSS.2018.8518700.
  • Molijn, R.A., et al., 2019. Sugarcane productivity mapping through C-band and L-band SAR and optical satellite imagery. Remote Sensing, 11 (9), 1109. doi:10.3390/rs11091109
  • Mutanga, O., Adam, E., and Azong, M., 2012. High Density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm. International Journal of Applied Earth Observation and Geoinformation, 18, 399–406. doi:10.1016/j.jag.2012.03.012
  • Mutanga, O. and Skidmore, A.K., 2004. Narrow band vegetation indices overcome the saturation problem in biomass estimation. International Journal of Remote Sensing, 25 (19), 3999–4014. doi:10.1080/01431160310001654923
  • Nuthammachot, N., Askar, A., and Stratoulias, D., 2020. Combined use of Sentinel-1 and Sentinel-2 data for improving above-ground biomass estimation. Geocarto International, 1–11. doi:10.1080/10106049.2020.1726507
  • Pasolli, L., Melgani, F., and Blanzieri, E., 2010. Gaussian process regression for estimating chlorophyll concentration in subsurface waters from remote sensing data. IEEE Geoscience and Remote Sensing Society, 99 (3), 464–468. doi:10.1109/LGRS.2009.2039191.
  • Pohl, C. and Van Genderen, J.L., 1998. Multisensor image fusion in remote sensing: concepts, methods and applications. International Journal of Remote Sensing, 19 (5), 823–854. doi:10.1080/014311698215748
  • Pratap, Y.V., Rajendra, P., and Ruchi, B., 2019. Leaf area index estimation of wheat crop using modified water cloud model from the time-series SAR and optical satellite data. Geocarto International, 1–12. doi:10.1080/10106049.2019.1624984
  • Roy, D.P., et al., 2019. Landsat-8 and Sentinel-2 burned area mapping - A combined sensor multi- temporal change detection approach. Remote Sensing of Environment, 231, 111254. doi:10.1016/j.rse.2019.111254
  • Samui, P., and Dixon, B., 2012. Application of support vector machine and relevance vector machine to determine evaporative losses in reservoirs. Hydrological Processes, 26(9), 1361–1369.
  • Scharf, P.C. and Lory, J.A., 2002. Calibrating corn color from aerial photographs to predict side-dress nitrogen need. Agronomy Journal, 94 (3), 397–404. doi:10.2134/agronj2002.3970.
  • Schulz, E., Speekenbrink, M., and Krause, A., 2018. A tutorial on Gaussian process regression: modelling, exploring, and exploiting functions. Journal of Mathematical Psychology, 85, 1–16. doi:10.1016/j.jmp.2018.03.001
  • Seeger, M.W., Williams, C.K., and Lawrence, N.D., 2003. Fast forward selection to speed up sparse Gaussian process regression. In International Workshop on Artificial Intelligence and Statistics, 254–261, PMLR.
  • Shao, Y., et al., 2001. Rice monitoring and production estimation using multitemporal RADARSAT. Remote Sensing of Environment, 76 (3), 310–325. doi:10.1016/S0034-4257(00)00212-1
  • Sharifi, A. and Hosseingholizadeh, M., 2020. Application of sentinel-1 data to estimate height and biomass of rice crop in Astaneh-ye Ashrafiyeh, Iran. Journal of the Indian Society of Remote Sensing, 48 (1), 11–19. doi:10.1007/s12524-019-01057-8
  • Svendsen, D.H., et al. 2017. Joint Gaussian processes for biophysical parameter retrieval. IEEE Transactions on Geoscience and Remote Sensing, 56 (3), 1718–1727. doi:10.1109/TGRS.2017.2767205
  • Tanaka, S., et al., 2015. Spectral Index for quantifying Leaf Area Index of winter wheat by field hyperspectral measurements: a case study in Gifu Prefecture, central Japan. Remote Sensing, 7 (5), 5329–5346. doi:10.3390/rs70505329
  • Tipping, M.E., 2001. Sparse Bayesian learning and the relevance vector machine. Journal of ML Research, 1, 211–244.
  • Torbick, N., et al., 2017. Monitoring rice agriculture across Myanmar using time series Sentinel-1 assisted by Landsat-8 and PALSAR-2. Remote Sensing, 9 (2), 119. doi:10.3390/rs9020119
  • Verrelst, J., et al. 2011. Retrieval of vegetation biophysical parameters using Gaussian process techniques. IEEE Transactions on Geoscience and Remote Sensing, 50 (5), 1832–1843. doi:10.1109/TGRS.2011.2168962
  • Verrelst, J., et al., 2012. ML regression algorithms for biophysical parameter retrieval: opportunities for Sentinel-2 and −3. Remote Sensing of Environment, 118, 127–139. doi:10.1016/j.rse.2011.11.002
  • Wang, L., et al., 2016. Estimation of biomass in wheat using random forest regression algorithm and remote sensing data. The Crop Journal, 4 (3), 212–219. doi:10.1016/j.cj.2016.01.008
  • Wang, J., et al., 2019a. Field-scale rice yield estimation using Sentinel-1A Synthetic Aperture Radar (SAR) data in coastal saline region of Jiangsu Province, China. Remote Sensing, 11 (19), 2274. doi:10.3390/rs11192274
  • Wang, J., et al., 2019b. Estimating leaf area index and above ground biomass of grazing pastures using Sentinel-1, Sentinel-2 and Landsat images. ISPRS Journal of Photogrammetry and Remote Sensing, 154, 189–201. doi:10.1016/j.isprsjprs.2019.06.007.
  • Xiao-hua, Y., et al., 2007. Estimation of vegetation biophysical parameters by remote sensing using radial basis function neural network. Journal of Zhejiang University: Science A, 8 (6), 883–895. doi:10.1631/jzus.2007.A0883
  • Xiao-hua, Y., et al., 2009. Comparison between radial basis function neural network and regression model for estimation of rice biophysical parameters using remote sensing. Pedosphere, 19 (2), 176–188. doi:10.1016/S1002-0160(09)60107-7
  • Yadav, V.P., Prasad, R., and Bala, R., 2021. Leaf area index estimation of wheat crop using modified water cloud model from the time-series SAR and optical satellite data. Geocarto International, 36 (7), 791–802. doi:10.1080/10106049.2019.1624984
  • Yan, L., et al., 2016. An automated approach for sub-pixel registration of Landsat-8 Operational Land Imager (OLI) and Sentinel-2 Multi Spectral Instrument (MSI) imagery. Remote Sensing, 8 (6), 520. doi:10.3390/rs8060520
  • Yin, G., et al., 2019. Retrieval of high spatiotemporal resolution leaf area index with Gaussian processes, Wireless Sensor Network, and Satellite Data Fusion. Remote Sensing, 11 (3), 244. doi:10.3390/rs11030244
  • Yue, J., et al., 2017. Estimation of winter wheat above-ground biomass using unmanned aerial vehicle-based snapshot hyperspectral sensor and crop height improved models. Remote Sensing, 9 (7), 708. doi:10.3390/rs9070708
  • Zhou, X., et al., 2016. Estimation of biomass in wheat using random forest regression algorithm and remote sensing data. CJ, 4 (3), 212–219. doi:10.1016/j.cj.2016.01.008

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.