158
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Reflectance spectroscopy and ASTER mapping of aeolian dunes of Shaqra and Tharmada Provinces, Saudi Arabia: Field validation and laboratory confirmation

, &
Pages 162-181 | Received 18 Oct 2021, Accepted 18 Apr 2022, Published online: 01 May 2022

References

  • Abolkhair, Y.M., 1985. The size characteristics of the drifting sand grains in Al-Hasa Oasis, Saudi Arabia. Geo Journal, 11 (2), 131–135.
  • Abolkhair, Y.M.S., 1986. The statistical analysis of the sand grain size distribution of Al-Ubay-Lah barchan dunes, northwestern Ar-Rub-Alkhali desert, Saudi Arabia. Geo Journal, 13 (2), 103–109.
  • Afrasinei, G.M., et al., 2018. Spatiotemporal and spectral analysis of sand encroachment dynamics in southern Tunisia. European Journal of Remote Sensing, 51 (1), 352–374. doi:10.1080/22797254.2018.1439343
  • Al-Ghamdi, K. and Hermas, E., 2015. Assessment of dune migration hazards against land use northwest Al-Lith City, Saudi Arabia, using multi-temporal satellite imagery. Arabian Journal of Geosciences, 8 (12), 11007–11018. doi:10.1007/s12517-015-1947-8
  • Al-Saud, M., 1985. Sand drift and its size characteristics in Ad-dahna desert on the Riyadh-Dammam highway. Master thesis published by the Department of Geography at Kuwait University Kuwait Geographical Society.
  • Amin, A. and Abu Seif, E.S., 2019. Environmental hazards of sand dunes, South Jeddah, Saudi Arabia: an assessment and mitigation geotechnical study. Earth Systems and Environment, 3 (2), 173–188. doi:10.1007/s41748-019-00100-5
  • Aydda, A., Althuwaynee, O.F., and Pokhare, B., 2020. An easy method for barchan dunes automatic extraction from multispectral satellite data. IOP Conference Series: Earth and Environmental Science, 419, 012015.
  • Bagnold, R.A., 1941. The physics of blown sand and desert dunes. 265p. Methuen, London: Chapman and Hall.
  • Bagnold, R.A., 1951. Sand formations in southern Arabia. The Geographical Journal, 117 (1), 78–86. doi:10.2307/1789795
  • Bamousa, A.O., 2018. Tectono-geomorphic development of intra-continental Cenozoic depressions within cretaceous rocks of the interior homocline, Central Arabia. Arabian Journal of Geosciences, 11 (18), 562. doi:10.1007/s12517-018-3884-9
  • Benaafi, M., et al., 2020. Integrated geological, hydrogeological, and geophysical investigations of a barchan sand dune in the Eastern Region of Saudi Arabia. Water, 12 (3), 682. doi:10.3390/w12030682
  • Benaafi, M. and Abdullatif, O., 2015. Sedimentological, mineralogical, and geochemical characterization of sand dunes in Saudi Arabia. Arabian Journal of Geosciences, 8 (12), 11073–11092. doi:10.1007/s12517-015-1970-9
  • Breed, C.S., et al., 1979. Regional studies of sand seas using Landsat (ERTS) imagery. A Study of Global Sand Seas, 1052 US Geological Survey, Professional Paper.‏‏, 305–397.
  • Bullard, J.E., White, K., and Livingstone, I., 2011. Morphometric analysis of aeolian bedforms in the Namib sand sea using ASTER data. Earth Surface Processes and Landforms, 36 (11), 1534–1549. doi:10.1002/esp.2189
  • Clark, R.N., 1999. Spectroscopy of rocks and minerals, and principles of spectroscopy. Manual of Remote Sensing, 3, 3–58.
  • Cooke, R.U., Cooke, R.U., and Warren, A., 1973. Geomorphology in deserts. Berkeley: University of California Press.‏
  • Corrie, R.K., Ninomiya, Y., and Aitchison, J.C., 2010. Applying advanced spaceborne thermal emission and reflection radiometer (ASTER) spectral indices for geological mapping and mineral identification on the tibetan plateau. International archives of the photogrammetry, remote sensing and spatial information science. Vol. XXXVIII. Part 8. Kyoto, Japan. 464–469.
  • Delgado Blasco, J.M., et al., 2020. Sand dune dynamics exploiting a fully automatic method using satellite SAR data. Remote Sensing, 12 (23), 3993. doi:10.3390/rs12233993
  • Eisele, A., et al., 2015. Advantages using the thermal infrared (TIR) to detect and quantify semi-arid soil properties. Remote Sensing of Environment, 163, 296–311. doi:10.1016/j.rse.2015.04.001
  • Elizabeth, C.I.P., et al., 1991. Discrimination of active and inactive sand from remote sensing: Kelso Dunes, mojave desert, California. Remote Sensing of Environment, 37 (3), 153–166. doi:10.1016/0034-4257(91)90078-K
  • Engel, M., Boesl, F., and Brückner, H., 2018. Migration of barchan dunes in Qatar–controls of the shamal, teleconnections, sea-level changes and human impact. Geosciences, 8 (7), 240. doi:10.3390/geosciences8070240
  • Folk, R.L., 1966. A review of grain‐size parameters. Sedimentology, 6 (2), 73–93. doi:10.1111/j.1365-3091.1966.tb01572.x
  • Folk, R.L., 1971. Longitudinal dunes of the northwestern edge of the simpson desert, Northern Territory, Australia, 1. Geomorphology and grain size relationships. Sedimentology, 16 (1–‐2), 5–54. doi:10.1111/j.1365-3091.1971.tb00217.x
  • Folk, R.W. and Ward, W.C., 1957. Brazos River bar, study in the significance of grain size parameters. Journal of Sedimentary Petrology, 27 (1), 3–27. doi:10.1306/74D70646-2B21-11D7-8648000102C1865D
  • Ghrefat, H.A., et al., 2007. Modeling grain size variations of aeolian gypsum deposits at white sands, new mexico using AVIRIS imagery. Geomorphology, 88 (1–2), 57–68‏. doi:10.1016/j.geomorph.2006.10.013
  • Gómez, D., et al., 2018. Detecting areas vulnerable to sand encroachment using remote sensing and GIS techniques in Nouakchott, Mauritania. Remote Sensing, 10 (10), 1541. doi:10.3390/rs10101541
  • Hermas, E., et al., 2019. Characterisation of sand accumulations in Wadi Fatmah and Wadi Ash Shumaysi, KSA, using multi-source remote sensing imagery. Remote Sensing, 11 (23), 2824. doi:10.3390/rs11232824
  • Hosseinjani, Z.M., et al., 2014b. Sub-pixel mineral mapping of a porphyry copper belt using EO-1 Hyperion data. Advances in Space Research, 53, 440–451.
  • Hosseinjani Zadeh, M., et al., 2014a. Spectral characteristics of minerals in alteration zones associated with porphyry copper deposits in the middle part of Kerman copper belt, SE Iran. Ore Geology Reviews, 62, 191–198. doi:10.1016/j.oregeorev.2014.03.013
  • Karimi, A., Khormali, F., and Wang, X., 2017. Discrimination of sand dunes and loess deposits using grain-size analysis in northeastern Iran. Arabian Journal of Geosciences, 10 (12), 275. doi:10.1007/s12517-017-3058-1
  • Kasper-Zubillaga, J.J. and Zolezzi-Ruiz, H., 2007. Grain size, mineralogical and geochemical studies of coastal and inland dune sands from El Vizcaino desert, Baja California Peninsula, Mexico. Revista Mexicana de Ciencias Geológicas, 24 (3), 423–438.
  • Koeshidayatullah, A., et al., 2016. Discrimination of inland and coastal dunes in Eastern Saudi Arabia desert system: an approach from particle size and textural parameter variations. Journal of African Earth Sciences, 117, 102–113. doi:10.1016/j.jafrearsci.2016.01.003
  • Lancaster, N., 1981. Grain size characteristics of namib desert linear dunes. Sedimentology, 28 (1), 115–122. doi:10.1111/j.1365-3091.1981.tb01668.x
  • Liu, B., et al., 2017. Grain size and geochemical study of the surface deposits of the sand dunes in the Mu Us desert, northern China. Geological Journal, 52 (6), 1009–1019. doi:10.1002/gj.2866
  • Lopez, O.M., Hegyb, M.C., and Missimerb, T.M., 2020. Statistical comparisons of grain size characteristics, hydraulic conductivity, and porosity of barchan desert dunes to coastal dunes. Aeolian Research, 43, 100576. doi:10.1016/j.aeolia.2020.100576
  • Mahmoud, A.M.A., et al., 2020. The use of SAR offset tracking for detecting sand dune movement in Sudan. Remote Sensing, 12 (20), 3410. doi:10.3390/rs12203410
  • Mcbride, E.F., 1971. Mathematical treatment of size distribution data. Procedures in sedimentary petrology.‏
  • Meftah, N. and Mahboub, M.S., 2020. Spectroscopic characterizations of sand dunes minerals of El-Oued (Northeast Algerian Sahara) by FTIR, XRF and XRD analyses. Silicon, 12 (1), 147–153. doi:10.1007/s12633-019-00109-5
  • Nguyen, D., Hilton, M., and Wakes, S., 2021. Aeolian sand transport thresholds in excavated foredune notches. Earth Surface Processes and Landforms. doi:10.1002/esp.5271
  • Ninomiya, Y., Fu, B., and Cudahy, T.J., 2005. Detecting lithology with advanced spaceborne thermal emission and reflection radiometer (ASTER) multispectral thermal infrared “radiance-at-sensor” data. Remote Sensing of Environment, 99 (1–2), 127–139. doi:10.1016/j.rse.2005.06.009
  • Paisley, E.C.I., et al., 1991. Discrimination of active and inactive sand from remote sensing: Kelso Dunes, Mojave Desert, California. Remote Sensing of Environment, 37 (3), 153–166.
  • Powers, R.W., et al., 1966. Geology of the Arabian Peninsula – sedimentary geology of Saudi Arabia: US geological survey Professional Paper, 560-D, Washington.
  • Purkait, B., 2006. Grain‐size distribution patterns of a point bar system in the Usri River, India. Earth Surface Processes and Landforms, 31 (6), 682–702. doi:10.1002/esp.1290
  • Purkait, B., 2010. The use of grain‐size distribution patterns to elucidate aeolian processes on a transverse dune of thar desert, India. Earth Surface Processes and Landforms, 35 (5), 525–530.
  • Rajendran, S., et al., 2011. Capability of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on discrimination of carbonates and associated rocks and mineral identification of Eastern Mountain region (Saih Hatat window) of sultanate of Oman. Carbonates and Evaporites, 26 (4), 351––364. doi:10.1007/s13146-011-0071-4
  • Rajendran, S. and Nasir, S., 2017. Characterization of ASTER spectral bands for mapping of alteration zones of Volcanogenic Massive Sulphide (VMS) deposits. Ore Geology Reviews, 88, 317–335. doi:10.1016/j.oregeorev.2017.04.016
  • Ramsey, M.S., et al., 1999. Identification of sand sources and transport pathways at the Kelso Dunes, California, using thermal infrared remote sensing. Geological Society of America Bulletin, 111 (5), 646–662. doi:10.1130/0016-7606(1999)111<0646:IOSSAT>2.3.CO;2
  • Rosas, J., Jadoon, K.Z., and Missimer, T.M., 2014. New empirical between grain size distribution and hydraulic conductivity for ephemeral stream bed sediments. Environmental Earth Sciences, 73, 3.
  • Sadiq, A. and Howari, F., 2009. Remote sensing and spectral characteristics of desert sand from Qatar Peninsula, Arabian/Persian Gulf. Remote Sensing, 1 (4), 915–933. doi:10.3390/rs1040915
  • Salisbury, J.W. and D’Aria, D.M., 1992. Infrared (8–14 μm) remote sensing of soil particle size. Remote Sensing of Environment, 42 (2), 157–165. doi:10.1016/0034-4257(92)90099-6
  • Salisbury, J.W. and Eastes, J.W., 1985. The effect of particle size and porosity on spectral contrast in the mid-infrared. Icarus, 64 (3), 586–588. doi:10.1016/0019-1035(85)90078-8
  • Scheidt, S., Lancaster, N., and Ramsey, M., 2011. Eolian dynamics and sediment mixing in the Gran Desierto, Sonora, MX: fusion of infrared orbital and emission spectroscopy data. Geological Society of America Bulletin, 123 (7–8), 1628–1644. doi:10.1130/B30338.1
  • Shen, Y., et al., 2020. Spatial heterogeneity of surface sediment grain size and aeolian activity in the Gobi desert region of northwest China. CATENA, 188 (10), 44–69. doi:10.1016/j.catena.2020.104469
  • Sloss, C.R., Hesp, P., and Shepherd, M., 2012. Coastal dunes: aeolian transport. Nature Education Knowledge, 3 (10), 21.
  • Smith, M.E., 2016. Sand compositional analysis using a combined geological and spectroscopic approach. Boca Raton, Florida: Florida Atlantic University.
  • Sun, Z., Lv, Y., and Tong, Z., 2016. Effects of particle size on bidirectional reflectance factor measurements from particulate surfaces. Optical Express, 24 (6), 612–634. doi:10.1364/OE.24.00A612
  • Vaughan, R.G., Calvin, W.M., and Taranik, J.V., 2003. SEBASS hyperspectral thermal infrared data: surface emissivity measurement and mineral mapping. Remote Sensing of Environment, 85 (1), 48–63. doi:10.1016/S0034-4257(02)00186-4
  • Wald, A.E. and Salisbury, J.W., 1995. Thermal infrared directional emissivity of powdered quartz. Journal of Geophysical Research: Solid Earth, 100 (B12), 24665–24675.
  • Wang, X., et al., 2003. Grain size characteristics of dune sands in the central Taklimakan Sand Sea. Sedimentary Geology, 161 (1–2), 1–14. doi:10.1016/S0037-0738(02)00380-9
  • White, K., et al., 2015. A morphometric comparison of the Namib and southwest Kalahari dunefields using ASTER GDEM data. Aeolian Research, 19, 87–95. doi:10.1016/j.aeolia.2015.09.006
  • Whitney, J.W., Faulkender, D.J., and Rubin, M., 1983. The environmental history and present condition of the northern sand seas of Saudi Arabia. Ministry of Petroleum and Mineral Resources, Deputy Ministry for Mineral Resources.‏
  • Wilson, I.G., 1972. Aeolian bedforms—their development and origins. Sedimentology, 19 (3‐4), 173–210.‏ ‏. doi:10.1111/j.1365-3091.1972.tb00020.x
  • Yang, Y.Y., et al., 2019. Converging effects of shrubs on shadow dune formation and sand trapping. Journal of Geophysical Research: Earth Surface, 124 (7), 1835–1853. doi:10.1029/2018JF004695
  • Zhu, B.-Q., Zhang, J.-X., and Sun, C., 2021. Physiochemical characteristics, provenance, and dynamics of sand dunes in the arid hexi corridor. Frontiers in Earth Science, 9, 728202. doi:10.3389/feart.2021.728202
  • Zouaouid, K. and Gheriani, R., 2019. Mineralogical analysis of sand roses and sand dunes samples from two regions of South Algeria. Silicon, 11 (3), 1537–1545. doi:10.1007/s12633-018-9974-1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.