2,622
Views
58
CrossRef citations to date
0
Altmetric
RESEARCH PAPER

Changes in bile acids, FGF-19 and sterol absorption in response to bile salt hydrolase active L. reuteri NCIMB 30242

, , , &
Pages 57-65 | Received 31 Oct 2014, Accepted 05 Jan 2015, Published online: 04 Mar 2015

Reference List

  • Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW, Sato H, Messaddeq N, Harney JW, Ezaki O, Kodama T, et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 2006; 439:484-9; PMID:16400329; http://dx.doi.org/10.1038/nature04330
  • Watanabe M, Houten SM, Wang L, Moschetta A, Mangelsdorf DJ, Heyman RA, Moore DD, Auwerx J. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J Clin Invest 2004; 113:1408-18; PMID:15146238; http://dx.doi.org/10.1172/JCI21025
  • Houten SM, Watanabe M, Auwerx J. Endocrine functions of bile acids. EMBO J 2006; 25:1419-25; PMID:16541101; http://dx.doi.org/10.1038/sj.emboj.7601049
  • Pols TW, Noriega LG, Nomura M, Auwerx J, Schoonjans K. The bile acid membrane receptor TGR5 as an emerging target in metabolism and inflammation. J Hepatol 2011:54: 1263-72; PMID:21145931; http://dx.doi.org/10.1016/j.jhep.2010.12.004
  • Ridlon JM, Kang DJ, Hylemon PB, Bajaj JS. Bile acids and the gut microbiome. Curr Opin Gastroenterol 2014; 30:332-8; PMID:24625896; http://dx.doi.org/10.1097/MOG.0000000000000057
  • Lefebvre P, Cariou B, Lien F, Kuipers F, Staels B. Role of Bile Acids and Bile Acid Receptors in Metabolic Regulation. Physiol Rev 2009; 89:147-91; PMID:19126757; http://dx.doi.org/10.1152/physrev.00010.2008
  • Patti ME, Houten SM, Bianco AC, Bernier R, Larsen PR, Holst JJ, Badman MK, Maratos-Flier E, Mun EC, Pihlajamaki J, et al. Serum bile acids are higher in humans with prior gastric bypass: potential contribution to improved glucose and lipid metabolism. Obesity 2009; 17:1671-7; PMID:19360006; http://dx.doi.org/10.1038/oby.2009.102
  • Ridlon JM, Alves JM, Hylemon PB, Bajaj JS. Cirrhosis, bile acids and gut microbiota: unraveling a complex relationship. Gut Microbes 2013; 4:382-7; PMID:23851335; http://dx.doi.org/10.4161/gmic.25723
  • Duboc H, Rajca S, Rainteau D, Benarous D, Maubert MA, Quervain E, Thomas G, Barbu V, Humbert L, Despras G, et al. Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases. Gut 2012; 62:531-9; PMID:22993202; http://dx.doi.org/10.1136/gutjnl-2012-302578
  • Duboc H, Rainteau D, Rajca S, Humbert L, Farabos D, Maubert M, Grondin V, Jouet P, Bouhassira D, Seksik P, et al. Increase in fecal primary bile acids and dysbiosis in patients with diarrhea-predominant irritable bowel syndrome. Neurogastroenterol Motil 2012; 24:513-7; PMID:22356587; http://dx.doi.org/10.1111/j.1365-2982.2012.01893.x
  • Matsubara T, Li F, Gonzalez FJ. FXR signaling in the enterohepatic system. Mol Cell Endocrinol 2013; 368:17-29; PMID:22609541; http://dx.doi.org/10.1016/j.mce.2012.05.004
  • Thomas C, Gioiello A, Noriega L, Strehle A, Oury J, Rizzo G, Macchiarulo A, Yamamoto H, Mataki C, Pruzanski M, et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab 2009; 10:167-77; PMID:19723493; http://dx.doi.org/10.1016/j.cmet.2009.08.001
  • Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, Almeida M, Arumugam M, Batto JM, Kennedy S, et al. Richness of human gut microbiome correlates with metabolic markers. Nature 2013; 500:541-6; PMID:23985870; http://dx.doi.org/10.1038/nature12506
  • Larsen N, Vogensen FK, van den Berg FW, Nielsen DS, Andreasen AS, Pedersen BK, Al-Soud WA, Sorensen SJ, Hansen LH, Jakobsen M. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One 2010; 5:e9085; PMID:20140211; http://dx.doi.org/10.1371/journal.pone.0009085
  • Peterson DA, Frank DN, Pace NR, Gordon JI. Metagenomic approaches for defining the pathogenesis of inflammatory bowel diseases. Cell Host Microbe 2008; 3:417-27; PMID:18541218; http://dx.doi.org/10.1016/j.chom.2008.05.001
  • Ogilvie LA, Jones BV. Dysbiosis modulates capacity for bile acid modification in the gut microbiomes of patients with inflammatory bowel disease: a mechanism and marker of disease? Gut 2012; 61:1642-3; PMID:22490526; http://dx.doi.org/10.1136/gutjnl-2012-302137
  • Labbé A, Ganopolsky JG, Martoni CJ, Prakash S, Jones ML. Bacterial bile metabolising gene abundance in the Crohn's, ulcerative colitis and type 2 diabetes metagenome. PLoS One 2014; 9:e115175; PMID: 25517115
  • Jones BV, Begley M, Hill C, Gahan CG, Marchesi JR. Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc Natl Acad Sci U S A 2008; 105:13580-5; PMID:18757757; http://dx.doi.org/10.1073/pnas.0804437105
  • Joyce SA, MacSharry J, Casey PG, Kinsella M, Murphy EF, Shanahan F, Hill C, Gahan CG. Regulation of host weight gain and lipid metabolism by bacterial bile acid modification in the gut. Proc Natl Acad Sci U S A 2014; 111:7421-6; PMID:24799697; http://dx.doi.org/10.1073/pnas.1323599111
  • Jones ML, Martoni CJ, Parent M, Prakash S. Cholesterol-lowering efficacy of a microencapsulated bile salt hydrolase-active Lactobacillus reuteri NCIMB 30242 yoghurt formulation in hypercholesterolaemic adults. Br J Nutr 2012; 107:1505-13; PMID:22067612; http://dx.doi.org/10.1017/S0007114511004703
  • Jones ML, Martoni CJ, Prakash S. Cholesterol lowering and inhibition of sterol absorption by Lactobacillus reuteri NCIMB 30242: a randomized controlled trial. Eur J Clin Nutr 2012; 66:1234-41; PMID:22990854; http://dx.doi.org/10.1038/ejcn.2012.126
  • Ooi LG, Ahmad R, Yuen KH, Liong MT. Lactobacillus gasseri CHO-220 and inulin reduced plasma total cholesterol and low-density lipoprotein cholesterol via alteration of lipid transporters. J Dairy Sci 2010; 93: 5048-58:PMID:20965319; http://dx.doi.org/10.3168/jds.2010-3311
  • Holt JA, Luo G, Billin AN, Bisi J, McNeill YY, Kozarsky KF, Donahee M, Wang DY, Mansfield TA, Kliewer SA, et al. Definition of a novel growth factor-dependent signal cascade for the suppression of bile acid biosynthesis. Genes Dev 2003; 17:1581-91 PMID:12815072; http://dx.doi.org/10.1101/gad.1083503
  • Miettinen TA, Gylling H, Nissinen MJ. The role of serum non-cholesterol sterols as surrogate markers of absolute cholesterol synthesis and absorption. Nutr Metab Cardiovasc Dis 2011; 21:765-9; PMID:21899991; http://dx.doi.org/10.1016/j.numecd.2011.05.005
  • Schiff ER, Small NC, Dietschy JM. Characterization of the kinetics of the passive and active transport mechanisms for bile acid absorption in the small intestine and colon of the rat. J Clin Invest 1972; 51:1351-62; PMID:5024036; http://dx.doi.org/10.1172/JCI106931
  • Fang F, Li Y, Bumann M, Raftis EJ, Casey PG, Cooney JC, Walsh MA, O'Toole PW. Allelic variation of bile salt hydrolase genes in Lactobacillus salivarius does not determine bile resistance levels. J Bacteriol 2009; 191:5743-57; PMID:19592587; http://dx.doi.org/10.1128/JB.00506-09
  • Gaull GE, Pasantes-Morales H, Wright CE. Taurine in human nutrition: overview. Prog Clin Biol Res 1985; 179:3-21; PMID:3903756
  • Grill JP, Cayuela C, Antoine JM, Schneider F. Isolation and characterization of a Lactobacillus amylovorus mutant depleted in conjugated bile salt hydrolase activity: relation between activity and bile salt resistance. J Appl Microbiol 2000; 89:553-63; PMID:11054157; http://dx.doi.org/10.1046/j.1365-2672.2000.01147.x
  • Abumrad NA, Davidson NO. Role of the gut in lipid homeostasis. Physiol Rev 2012; 92:1061-85; PMID:22811425; http://dx.doi.org/10.1152/physrev.00019.2011
  • Yu L, Li-Hawkins J, Hammer RE, Berge KE, Horton JD, Cohen JC, Hobbs HH. Overexpression of ABCG5 and ABCG8 promotes biliary cholesterol secretion and reduces fractional absorption of dietary cholesterol. J Clin Invest 2002; 110: 671-80:PMID:12208868; http://dx.doi.org/10.1172/JCI0216001
  • Ockene IS, Chiriboga DE, Stanek EJ, III, Harmatz MG, Nicolosi R, Saperia G, Well AD, Freedson P, Merriam PA, Reed G, et al. Seasonal variation in serum cholesterol levels: treatment implications and possible mechanisms. Arch Intern Med 2004; 164:863-70; PMID:15111372; http://dx.doi.org/10.1001/archinte.164.8.863
  • Kidambi S, Patel SB. Cholesterol and non-cholesterol sterol transporters: ABCG5, ABCG8 and NPC1L1: a review. Xenobiotica 2008; 38:1119-39; PMID:18668442; http://dx.doi.org/10.1080/00498250802007930
  • Johnson BJ, Lee JY, Pickert A, Urbatsch IL. Bile acids stimulate ATP hydrolysis in the purified cholesterol transporter ABCG5/G8. Biochemistry 2010; 49:3403-11; PMID:20210363; http://dx.doi.org/10.1021/bi902064g
  • Potthoff MJ, Kliewer SA, Mangelsdorf DJ. Endocrine fibroblast growth factors 15/19 and 21: from feast to famine. Genes Dev 2012; 26:312-24; PMID:22302876; http://dx.doi.org/10.1101/gad.184788.111
  • Wu X, Ge H, Baribault H, Gupte J, Weiszmann J, Lemon B, Gardner J, Fordstrom P, Tang J, Zhou M, et al. Dual actions of fibroblast growth factor 19 on lipid metabolism. J Lipid Res 2013; 54:325-32; PMID:23204296; http://dx.doi.org/10.1194/jlr.M027094
  • Styer AM, Roesch SL, Argyropoulos G. Modulation of fibroblast growth factor 19 expression by bile acids, meal replacement and energy drinks, milk, and coffee. PLoS One 2014; 9:e85558; PMID:24465600; http://dx.doi.org/10.1371/journal.pone.0085558
  • Kuribayashi H, Miyata M, Yamakawa H, Yoshinari K, Yamazoe Y. Enterobacteria-mediated deconjugation of taurocholic acid enhances ileal farnesoid X receptor signaling. Eur J Pharmacol 2012; 697:132-8; PMID:23051670; http://dx.doi.org/10.1016/j.ejphar.2012.09.048
  • Vassie C, Nolan JD, Johnston IM, Shapiro D, Walters JR. Obeticholic acid, a farnesoid X receptor agonist, reduces bile acid synthesis in patients with primary bile acid diarrhea. Gastroenterology 2014; 146:S-797; PMID:25329562; http://dx.doi.org/10.1016/S0016-5085(14)62881-X
  • Degirolamo C, Rainaldi S, Bovenga F, Murzilli S, Moschetta A. Microbiota modification with probiotics induces hepatic bile acid synthesis via downregulation of the Fxr-Fgf15 axis in mice. Cell Rep 2014; 7:12-8; PMID:24656817; http://dx.doi.org/10.1016/j.celrep.2014.02.032
  • Begley M, Gahan CGM, Hill C. The interaction between bacteria and bile. Fems Microbiology Reviews 2005; 29:625-51; PMID:16102595; http://dx.doi.org/10.1016/j.femsre.2004.09.003
  • Devkota S, Wang Y, Musch MW, Leone V, Fehlner-Peach H, Nadimpalli A, Antonopoulos DA, Jabri B, Chang EB. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10-/- mice. Nature 2012; 487:104-8; PMID:22722865; http://dx.doi.org/10.1038/nature11225
  • Vrieze A, Out C, Fuentes S, Jonker L, Reuling I, Kootte RS, Van NE, Holleman F, Knaapen M, Romijn JA, et al. Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity. J Hepatol 2014; 60:824-31; PMID:24316517; http://dx.doi.org/10.1016/j.jhep.2013.11.034
  • Scherer M, Gnewuch C, Schmitz G, Liebisch G. Rapid quantification of bile acids and their conjugates in serum by liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:3920-5; PMID:19819765; http://dx.doi.org/10.1016/j.jchromb.2009.09.038
  • Matysik S, Klunemann HH, Schmitz G. Gas chromatography-tandem mass spectrometry method for the simultaneous determination of oxysterols, plant sterols, and cholesterol precursors. Clin Chem 2012; 58:1557-64; PMID:22997279; http://dx.doi.org/10.1373/clinchem.2012.189605

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.