5,035
Views
188
CrossRef citations to date
0
Altmetric
Review

Taurocholic acid metabolism by gut microbes and colon cancer

, &
Pages 201-215 | Received 04 Dec 2015, Accepted 01 Feb 2016, Published online: 11 Apr 2016

Reference

  • Howlader N, Noone AM, Krapcho M, Garshell J, Miller D, Altekruse SF, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA (eds). SEER Cancer Statistics Review, 1975–2012, National Cancer Institute. Bethesda, MD, http:// seer .cancer. gov/csr/1975_2012/,-based-on-November-2014-SEER-data-submission,-posted-to-the-SEER -web-site, April 2015.
  • O'Shaughnessy JA, Kelloff GJ, Gordon GB, Dannenberg AJ, Hong WK, Fabian CJ, Sigman CC, Bertagnolli MM, Stratton SP, Lam S, et al. Treatment and prevention of intraepithelial neoplasia: An important target for accelerated new agent development. Clin Cancer Res 2002; 8:314-46.
  • Durko L, Malecka-Panas E. Lifestyle modifications and colorectal cancer. Curr Colorectal Cancer Re 2014; 10:45-54; PMID:24659930; http://dx.doi.org/10.1007/s11888-013-0203-4
  • Biedermann L, Zeitz J, Mwinyi J, Sutter-Minder E, Rehman A, Ott SJ, Steurer-Stey C, Frei A, Frei P, Scharl M, et al. Smoking cessation induces profound changes in the composition of the intestinal microbiota in humans. PLoS One 2013; 8(3):e59260; PMID:23516617; http://dx.doi.org/10.1371/journal.pone.0059260
  • Mutlu EA, Gillevet PM, Rangwala H, Sikaroodi M, Naqvi A, Engen PA, Kwasny M, Lau CK, Keshavarzian A. Colonic microbiome is altered in alcoholism. Am J Physiol Gastrointest Liver Physiol 2012; 302(9):G966-78; PMID:22241860; http://dx.doi.org/10.1152/ajpgi.00380.2011
  • Gao Z, Guo B, Gao R, Zhu Q, Qin H. Microbiota dysbiosis is associated with colorectal cancer. Front Microbiol 2015; 6:20; PMID:25699023
  • Dejea CM, Wick EC, Hechenbleikner EM, White JR, Mark Welch JL, Rossetti BJ, Peterson SN, Snesrud EC, Borisy GG, Lazarev M, et al. Microbiota organization is a distinct feature of proximal colorectal cancers. Proc Natl Acad Sci U S A 2014; 111(51):18321-6; PMID:25489084; http://dx.doi.org/10.1073/pnas.1406199111
  • Brim H, Yooseph S, Zoetendal EG, Lee E, Torralbo M, Laiyemo AO, Shokrani B, Nelson K, Ashktorab H. Microbiome analysis of stool samples from African Americans with colon polyps. PLoS One 2013; 8(12):e81352; PMID:24376500; http://dx.doi.org/10.1371/journal.pone.0081352
  • Zackular JP, Baxter NT, Iverson KD, Sadler WD, Petrosino JF, Chen GY, Schloss PD. The gut microbiome modulates colon tumorigenesis. MBio 2013; 4(6):e00692-13; PMID:24194538; http://dx.doi.org/10.1128/mBio.00692-13
  • Weir TL, Manter DK, Sheflin AM, Barnett BA, Heuberger AL, Ryan EP. Stool microbiome and metabolome differences between colorectal cancer patients and healthy adults. PLoS One 2013; 8(8):e70803; PMID:23940645; http://dx.doi.org/10.1371/journal.pone.0070803
  • Marchesi JR, Dutilh BE, Hall N, Peters WH, Roelofs R, Boleij A, Tjalsma H. Towards the human colorectal cancer microbiome. PLoS One 2011; 6(5):e20447; PMID:21647227; http://dx.doi.org/10.1371/journal.pone.0020447
  • Mima K, Nishihara R, Qian ZR, Cao Y, Sukawa Y, Nowak JA, Yang J, Dou R, Masugi Y, Song M, et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut 2015; pii: gutjnl-2015-310101. http://dx.doi.org/10.1136/gutjnl-2015-310101
  • Mima K, Sukawa Y, Nishihara R, Qian ZR, Yamauchi M, Inamura K, Kim SA, Masuda A, Nowak JA, Nosho K, et al. Fusobacterium nucleatum and T cells in colorectal carcinoma. JAMA Oncol 2015; 1(5):653-61; PMID:26181352; http://dx.doi.org/10.1001/jamaoncol.2015.1377
  • McCoy AN, Araújo-Pérez F, Azcárate-Peril A, Yeh JJ, Sandler RS, Keku TO. Fusobacterium is associated with colorectal adenomas. PLoS One 2013; 8(1):e53653; PMID:23335968; http://dx.doi.org/10.1371/journal.pone.0053653
  • Sears CL, Geis AL, Housseau F. Bacteroides fragilis subverts mucosal biology: from symbiont to colon carcinogenesis. J Clin Invest 2014; 124(10):4166-72; PMID:25105360; http://dx.doi.org/10.1172/JCI72334
  • Boleij A, Hechenbleikner EM, Goodwin AC, Badani R, Stein EM, Lazarev MG, Ellis B, Carroll KC, Albesiano E, Wick EC, Platz EA, Pardoll DM, Sears CL. The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clin Infect Dis 2015; 60(2):208-15; PMID:25305284; http://dx.doi.org/10.1093/cid/ciu787
  • Raisch J, Buc E, Bonnet M, Sauvanet P, Vazeille E, de Vallée A, Déchelotte P, Darcha C, Pezet D, Bonnet R, et al. Colon cancer-associated B2 Escherichia coli colonize gut mucosa and promote cell proliferation. World J Gastroenterol 2014; 20(21):6560-72; PMID:24914378; http://dx.doi.org/10.3748/wjg.v20.i21.6560
  • Ridlon JM, Alves JM, Hylemon PB, Bajaj JS. Cirrhosis, bile acids and gut microbiota: unraveling a complex relationship. Gut Microbes 2013; 4(5):382-7; PMID:23851335; http://dx.doi.org/10.4161/gmic.25723
  • Ridlon JM, Kang DJ, Hylemon PB, Bajaj JS. Bile acids and the gut microbiome. Curr Opin Gastroenterol 2014; 30(3):332-8; PMID:24625896; http://dx.doi.org/10.1097/MOG.0000000000000057
  • Zhou H, Hylemon PB. Bile acids are nutrient signaling hormones. Steroids 2014; 86:62-8; PMID:24819989; http://dx.doi.org/10.1016/j.steroids.2014.04.016
  • Lambert IH, Kristensen DM, Holm JB, Mortensen OH. Physiological role of taurine-from organism to organelle. Acta Physiol 2015; 213:191-212; http://dx.doi.org/10.1111/apha.12365
  • Reissig CJ, Strain EC, Griffiths RR. Caffeinated energy drinks-a growing problem. Drug Alcohol Depend 2009; 99:1-10; PMID:18809264; http://dx.doi.org/10.1016/j.drugalcdep.2008.08.001
  • Chiang JY. Bile acids: regulation of synthesis. J Lipid Res 2009; 50:1955-1966; PMID:19346330; http://dx.doi.org/10.1194/jlr.R900010-JLR200
  • Wang DQ, Carey MC. Therapeutic uses of animal biles in traditional Chinese medicine: an ethnopharmacological, biophysical chemical and medicinal review. World J Gastroenterol 2014; 20(29):9952-75; PMID:25110425; http://dx.doi.org/10.3748/wjg.v20.i29.9952
  • Hofmann AF, Hagey LR, Krasowski MD. Bile salts of vertebrates: structural variation and possible evolutionary significance. J Lipid Res 2010; 51(2):226-46; PMID:19638645; http://dx.doi.org/10.1194/jlr.R000042
  • Hofmann AF, Roda A. Physicochemical properties of bile acids and their relationship to biological properties: an overview of the problem. J Lipid Res 1984; 25:1477-89; PMID:6397555
  • Killenberg PG, Jordan JT. Purification and characterization of bile acid-CoA:amino acid N-acyltransferase from rat liver. J Biol Chem 1978; 253(4):1005-10; PMID:624713
  • Shersten T. in Metabolic Conjugation and Metabolic Hydrolysis (Fisherman, W.H., ed) 1971; pp. 75-121, Academic Press, New York.
  • Vessey DA. The co-purification and common identity of cholyl CoA:glycine- and cholyl CoA:taurine-N-acyltransferase activities from bovine liver. J Biol Chem 1979; 254(6):2059-63; PMID:422567
  • Johnson MR, Barnes S, Sweeny DJ, Diasio RB. 2-Fluoro-beta-alanine, a previously unrecognized substrate for bile acid coenzyme A:amino acid:N-acyltransferase from human liver. Biochem Pharmacol 1990; 40(6):1241-46; PMID:2119585; http://dx.doi.org/10.1016/0006-2952(90)90389-3
  • Hardison WGM. Hepatic taurine concentration and dietary taurine as regulators of bile acid conjugation with taurine. Gastroenterology 1978; 75:71-75; PMID:401099
  • Sjöval J. Dietary glycine and taurine on bile acid conjugation in man. Bile acids and steroids 75. Proc Soc Exp Biol Med 1959; 100(4):676-8; PMID:13645682; http://dx.doi.org/10.3181/00379727-100-24741
  • Falany CN, Johnson MR, Barnes S, Diasio RB. Glycine and taurine conjugation of bile acids by a single enzyme. Molecular cloning and expression of human liver bile acid CoA:amino acid N-acyltransferase. J Biol Chem 1994; 269(30):19375-9; PMID:8034703
  • Hofmann AF. The continuing importance of bile acids in liver and intestinal disease. Arch Intern Med 1999; 159(22):2647-58; PMID:10597755; http://dx.doi.org/10.1001/archinte.159.22.2647
  • Dawson PA, Karpen SJ. Intestinal transport and metabolism of bile acids. J Lipid Res 2015; 56(6):1085-99; PMID:25210150; http://dx.doi.org/10.1194/jlr.R054114
  • Hofmann AF, Hagey LR. Key discoveries in bile acid chemistry and biology and their clinical applications: history of the last eight decades. J Lipid Res 2014; 55:1553-1595; PMID:24838141; http://dx.doi.org/10.1194/jlr.R049437
  • Ridlon JM, Harris SC, Bhowmilk S, Kang D, Hylemon PB. Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes 2016; 7(1):22-39.
  • Hughes DT, Sperandio V. Inter-kingdom signaling: communication between bacteria and their hosts. Nat Rev Microbiol 2008; 6:111-120; PMID:18197168; http://dx.doi.org/10.1038/nrmicro1836
  • Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res 2006; 47(2):241-59; PMID:16299351; http://dx.doi.org/10.1194/jlr.R500013-JLR200
  • Batta AK, Salen G, Arora R, Shefer S, Batta M, Person A. Side chain conjugation prevents bacterial 7-dehydroxylation of bile acids. J Biol Chem 1990; 265(19):10925-28; PMID:2358447
  • Stellwag EJ, Hylemon PB. 7alpha-dehydroxylation of cholic acid and chenodeoxycholic acid by Clostridium leptum. J Lipid Res 1979; 20(3):325-333; PMID:36438
  • Devlin AS, Fischbach MA. A biosynthetic pathway for a prominent class of microbiota-derived bile acids. Nat Chem Biol 2015; 11(9):685-90; PMID:26192599; http://dx.doi.org/10.1038/nchembio.1864
  • Macdonald IA, White BA, Hylemon PB. Separation of 7 alpha- and 7 beta-hydroxysteroid dehydrogenase activities from clostridium absonum ATCC# 27555 and cellular response of this organism to bile acid inducers. J Lipid Res 1983; 24(9):1119-26; PMID:6579144
  • Kitahara M, Takamine F, Imamura T, Benno Y. Assignment of Eubacterium sp. VPI 12708 and related strains with high bile acid 7alpha-dehydroxylating activity to Clostridium scindens and proposal of Clostridium hylemonae sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 2000; 50 Pt 3:971-8; PMID:10843034; http://dx.doi.org/10.1099/00207713-50-3-971
  • Islam KB, Fukiya S, Hagio M, Fujii N, Ishizuka S, Ooka T, Ogura Y, Hayashi T, Yokota A. Bile acid is a host factor that regulates the composition of the cecal microbiota in rats. Gastroenterology 2011; 141(5):1773-81; PMID:21839040; http://dx.doi.org/10.1053/j.gastro.2011.07.046
  • Buffie CG, Bucci V, Stein RR, McKenney PT, Ling L, Gobourne A, No D, Liu H, Kinnebrew M, Viale A, et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 2015; 517(7533):205-8; PMID:25337874; http://dx.doi.org/10.1038/nature13828
  • David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014; 505(7484):559-63; PMID:24336217; http://dx.doi.org/10.1038/nature12820
  • O'Keefe SJ, Li JV, Lahti L, Ou J, Carbonero F, Mohammed K, Posma JM, Kinross J, Wahl E, Ruder E, et al. Fat, fibre and cancer risk in African Americans and rural Africans. Nat Commun 2015; 6:6342; PMID:25919227; http://dx.doi.org/10.1038/ncomms7342
  • Makishima M, Lu TT, Xie W, Whitfield GK, Domoto H, Evans RM, Haussler MR, Mangelsdorf DJ. Vitamin D receptor as an intestinal bile acid sensor. Science 2002; 296(5571):1313-6; PMID:12016314; http://dx.doi.org/10.1126/science.1070477
  • Heuman DM. Quantitative estimation of the hydrophilic-hydrophobic balance of mixed bile salt solutions. J Lipid Res 1989; 30(5):719-30; PMID:2760545
  • Magee EA, Richardson CJ, Hughes R, Cummings JH. Contribution of dietary protein to sulfide production in the large intestine: an in vitro and a controlled feeding study in humans. Am J Clin Nutr 2000; 72(6):1488-94; PMID:11101476
  • Devkota S, Wang Y, Musch MW, Leone V, Fehlner-Peach H, Nadimpalli A, Antonopoulos DA, Jabri B, Chang EB. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10−/− mice. Nature 2012; 487(7405):104-8; PMID:22722865
  • Finegold S, Summanen P, Gerardo SH, Baron E. (1992) Clinical importance of Bilophila wadsworthia. Eur J Clin Microbiol Infect Dis 1992; 11:1058-63; PMID:1295759; http://dx.doi.org/10.1007/BF01967799
  • Claros MC, Schumacher UK, Jacob M, Hunt Gerardo S, Kleinkauf N, Goldstein EJC, Finegold SM, Rodloff AC. Characterization ofBilophila wadsworthia isolates using PCR fingerprinting. Anaerobe 1999; 5:589-593; http://dx.doi.org/10.1006/anae.1999.0307
  • Loubinoux J, Mory F, Pereira IA, Le Faou AE. Bacteremia caused by a strain of Desulfovibrio related to the provisionally named Desulfovibrio fairfieldensis. J Clin Microbiol 2000; 38(2):931-4; PMID:10655421
  • Tee W, Dyall-Smith M, Woods W, Eisen D. Probable new species of Desulfovibrio isolated from a pyogenic liver abscess. J Clin Microbiol 1996; 34(7):1760-64; PMID:8784584
  • Lengeler J, Drews G, Schlegel H. Biology of the Prokaryotes 1999. Pp. 293. Wiley-Blackwell.
  • Müller AL, Kjeldsen KU, Rattei T, Pester M, Loy A. Phylogenetic and environmental diversity of DsrAB-type dissimilatory (bi)sulfite reductases. The ISME Journal 2014; 9:1152-1165; PMID:25343514; http://dx.doi.org/10.1038/ismej.2014.208
  • Huang CJ, Barrett EL. Sequence analysis and expression of the Salmonella typhimurium asr operon encoding production of hydrogen sulfide from sulfite. J Bacteriol 1991; 173(4):1544-53; PMID:1704886
  • Harrison G, Curle C, Laishley EJ. Purification and characterization of an inducible dissimilatory type sulfite reductase from Clostridium pasteurianum. Arch Microbiol 1984; 138(1):72-8; PMID:6742957; http://dx.doi.org/10.1007/BF00425411
  • Laue H, Friedrich M, Ruff J, Cook AM. Dissimilatory sulfite reductase (desulfoviridin) of the taurine-degrading, non-sulfate-reducing bacterium Bilophila wadsworthia RZATAU contains a fused DsrB-DsrD subunit. J Bacteriol 2001; 183(5):1727-33; PMID:11160104; http://dx.doi.org/10.1128/JB.183.5.1727-1733.2001
  • Nava GM, Carbonero F, Croix JA, Greenberg E, Gaskins HR. Abundance and diversity of mucosa-associated hydrogenotrophic microbes in the healthy human colon. ISME J 2012; 6(1):57-70; PMID:21753800; http://dx.doi.org/10.1038/ismej.2011.90
  • Wynder EL. The epidemiology of large bowel cancer. Cancer Res 1975; 35(11 Pt.2):3388-94; PMID:1192406
  • Wynder EL, Kajitani T, Ishikawa S, Dodo H, Takano A. Environmental factors of cancer of the colon and rectum. II. Japanese epidemiological data. Cancer 1969; 23(5):1210-20; PMID:5778239; http://dx.doi.org/10.1002/1097-0142(196905)23:5%3c1210::AID-CNCR2820230530%3e3.0.CO;2-M
  • Haenszel W, Berg JW, Segi M, Kurihara M, Locke FB. Large-bowel cancer in Hawaiian Japanese. J Natl Cancer Inst 1973; 51(6):1765-79; PMID:4797262
  • WYNDER EL, LEMON FR, BROSS IJ. Cancer and coronary artery disease among Seventh-Day Adventists. Cancer 1959; 12:1016-28; PMID:13846288; http://dx.doi.org/10.1002/1097-0142(195909/10)12:5%3c1016::AID-CNCR2820120523%3e3.0.CO;2-2
  • Wynder EL, Shigematsu T. Environmental factors of cancer of the colon and rectum. Cancer 1967; 20(9):1520-61; PMID:6038396; http://dx.doi.org/10.1002/1097-0142(196709)20:9%3c1520::AID-CNCR2820200920%3e3.0.CO;2-3
  • Reddy BS, Wynder EL. Large-bowel carcinogenesis: fecal constituents of populations with diverse incidence rates of colon cancer. J Natl Cancer Inst 1973; 50(6):1437-42; PMID:4717561
  • Reddy BS, Mastromarino A, Wynder EL. Further leads on metabolic epidemiology of large bowel cancer. Cancer Res 1975; 35(11 Pt. 2):3403-6; PMID:1104152
  • Reddy BS, Wynder EL. Metabolic epidemiology of colon cancer. Fecal bile acids and neutral sterols in colon cancer patients and patients with adenomatous polyps. Cancer 1977; 39(6):2533-9; PMID:872053; http://dx.doi.org/10.1002/1097-0142(197706)39:6%3c2533::AID-CNCR2820390634%3e3.0.CO;2-X
  • Wynder EL, Reddy BS. Diet and cancer of the colon. Curr Concepts Nutr 1977; 6:55-71; PMID:604018
  • Reddy BS, Weisburger JH, Wynder EL. Fecal bacterial beta-glucuronidase: control by diet. Science 1974; 183(4123):416-7; PMID:4808971; http://dx.doi.org/10.1126/science.183.4123.416
  • O'Keefe SJ, Kidd M, Espitalier-Noel G, Owira P. Rarity of colon cancer in Africans is associated with low animal product consumption, not fiber. Am J Gastroenterol 1999; 94(5):1373-80; PMID:10235221; http://dx.doi.org/10.1111/j.1572-0241.1999.01089.x
  • Sharma S, O'Keefe SJ. Environmental influences on the high mortality from colorectal cancer in African Americans. Postgrad Med J 2007; 83(983):583-89; PMID:17823224; http://dx.doi.org/10.1136/pgmj.2007.058958
  • Berg A. Nutrition, development and population growth. Popul Bull 1973; 29:3-37; PMID:12309299
  • Le Marchand L, Kolonel LN. Cancer in Japanese migrants to Hawaii: interaction between genes and environment. Rev Epidemiol Sante Publique 1992; 40(6):425-30; PMID:1287741
  • Burkitt DP. Epidemiology of cancer of the colon and the rectum. Cancer 1971; 28(1):3-13; PMID:5165022; http://dx.doi.org/10.1002/1097-0142(197107)28:1%3c3::AID-CNCR2820280104%3e3.0.CO;2-N
  • Ou J, Carbonero F, Zoetendal EG, DeLany JP, Wang M, Newton K, Gaskins HR, O'Keefe SJ. Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans. Am J Clin Nutr 2013; 98(1):111-20; PMID:23719549; http://dx.doi.org/10.3945/ajcn.112.056689
  • Narisawa T, Magadia NE, Weisburger JH, Wynder EL. Promoting effect of bile acids on colon carcinogenesis after intrarectal instillation of N-methyl-N'-nitro-N-nitrosoguanidine in rats. J Natl Cancer Inst 1974; 53(4):1093-7; PMID:4427390
  • Reddy BS, Narasawa T, Weisburger JH, Wynder EL. Promoting effect of sodium deoxycholate on colon adenocarcinomas in germfree rats. J Natl Cancer Inst 1976; 56(2):441-2; PMID:1255778
  • Reddy BS, Watanabe K, Weisburger JH, Wynder EL. Promoting effect of bile acids in colon carcinogenesis in germ-free and conventional F344 rats. Cancer Res 1977; 37(9):3238-42; PMID:884672
  • Reddy BS, Weisburger JH, Wynder EL. Effects of dietary fat level and dimethylhydrazine on fecal acid and neutral sterol excretion and colon carcinogenesis in rats. J Natl Cancer Inst 1974; 52(2):507-11; PMID:4816006
  • van Faassen A, Ochsenkühn T, Houterman S, van der Ploeg EM, Bueno-de-Mesquita BH, Ocké MC, Bayerdörffer E, Janknegt RA. Plasma deoxycholic acid is related to deoxycholic acid in faecal water. Cancer Lett 1977; 114(1-2):293-294; http://dx.doi.org/10.1016/S0304-3835(97)04683-1
  • Bayerdörffer E, Mannes GA, Ochsenkühn T, Dirschedl P, Wiebecke B, Paumgartner G. Unconjugated secondary bile acids in the serum of patients with colorectal adenomas. Gut 1995; 36(2):268-73; PMID:7883228; http://dx.doi.org/10.1136/gut.36.2.268
  • Bayerdörffer E, Mannes GA, Richter WO, Ochsenkühn T, Wiebecke B, Köpcke W, Paumgartner G. Increased serum deoxycholic acid levels in men with colorectal adenomas. Gastroenterology 1993; 104(1):145-151; PMID:8419237
  • Ochsenkühn T, Bayerdörffer E, Meining A, Schinkel M, Thiede C, Nüssler V, Sackmann M, Hatz R, Neubauer A, Paumgartner G. Colonic mucosal proliferation is related to serum deoxycholic acid levels. Cancer 1999; 85(8):1664-1669; PMID:10223558; http://dx.doi.org/10.1002/(SICI)1097-0142(19990415)85:8%3c1664::AID-CNCR4%3e3.0.CO;2-O
  • Cheng K, Raufman JP. Bile acid-induced proliferation of a human colon cancer cell line is mediated by transactivation of epidermal growth factor receptors. Biochem Pharmacol 2005; 70(7):1035-1047; PMID:16139803; http://dx.doi.org/10.1016/j.bcp.2005.07.023
  • Brown JR, DuBois RN. COX-2: A molecular target for colorectal cancer prevention. J Clin Oncol 2005; 23:2840-2855; PMID:15837998; http://dx.doi.org/10.1200/JCO.2005.09.051
  • Qiao L, Studer E, Leach K, McKinstry R, Gupta S, Decker R, Kukreja R, Valerie K, Nagarkatti P, El Deiry W, et al. Deoxycholic acid (DCA) causes ligand-independent activation of epidermal growth factor receptor (EGFR) and FAS receptor in primary hepatocytes: inhibition of EGFR/mitogen-activated protein kinase-signaling module enhances DCA-induced apoptosis. Mol Biol Cell 2001; 12(9):2629-2645; PMID:11553704; http://dx.doi.org/10.1091/mbc.12.9.2629
  • Pai R, Tarnawski AS, Tran T. Deoxycholic acid activates β-catenin signaling pathway and increases colon cell cancer growth and invasiveness. Mol Biol Cell 2004; 15:2156-2163; PMID:15004225; http://dx.doi.org/10.1091/mbc.E03-12-0894
  • Munemitsu S, Albert I, Souza B, Rubinfeld B, Polakis P. Regulation of intracellular betacatenin levels by the adenomatous polyposis coli (APC) tumor-suppressor protein. Proc Natl Acad Sci USA 1995; 92(7):3046-3050; PMID:7708772; http://dx.doi.org/10.1073/pnas.92.7.3046
  • Oshima M, Oshima H, Kitagawa K, Kobayashi M, Itakura C, Taketo M. Loss of Apc heterozygosity and abnormal tissue building in nascent intestinal polyps in mice carrying a truncated Apcgene. Proc Natl Acad Sci USA 1995; 92:4482-4486; PMID:7753829; http://dx.doi.org/10.1073/pnas.92.10.4482
  • Lee HK, Jeong S. β-catenin stabilizes cyclooxygenase-2 mRNA by interacting with AU-rich elements of 3′-UTR. Nucl Acids Res 2006; 34(19):5705-5714; PMID:17040897; http://dx.doi.org/10.1093/nar/gkl698
  • Qiao D, Gaitonde SV, Qi W, Martinez JD. Deoxycholic acid suppresses p53 by stimulating proteosome-mediated p53 protein degradation. Carcinogenesis 2001; 22(6):957-964; PMID:11375905; http://dx.doi.org/10.1093/carcin/22.6.957
  • Christl SU, Scheppach W, Kasper H. Hydrogen metabolism in the large intestine-physiology and clinical implications. Z Gastroenterol 1995; 33:408-13; PMID:7571760
  • Pitcher MCL, Beatty ER, Cummings JH. The contribution of sulphate reducing bacteria and 5-aminosalicyclic acid to fecal sulphide in patients with ulcerative colitis. Gut 2000; 46:64-72; PMID:10601057; http://dx.doi.org/10.1136/gut.46.1.64
  • Gibson GR, Cummings JH, Macfarlane GT. Growth and activities of sulphate reducing bacteria in gut contents of healthy subjects and patients with ulcerative colitis. FEMS Microbiol Ecol 1991; 86:101-112; http://dx.doi.org/10.1111/j.1574-6968.1991.tb04799.x
  • Roediger WE, Moore J, Babidge W. Colonic sulfide in pathogenesis and treatment of ulcerative colitis. Dig Dis Sci 1997; 42:1571-1579; PMID:9286219; http://dx.doi.org/10.1023/A:1018851723920
  • Moore J, Babidge W, Millard S, Roediger WE. Colonic luminal hydrogen sulfide is not elevated in ulcerative colitis. Dig Dis Sci 1998; 43:162-65; PMID:9508519; http://dx.doi.org/10.1023/A:1018848709769
  • Roediger WE. The colonic epithelium in ulcerative colitis: An energy deficiency disease? Lancet 1980; 2:712-715; PMID:6106826; http://dx.doi.org/10.1016/S0140-6736(80)91934-0
  • Roediger WE, Nance S. Metabolic induction of experimental colitis by inhibition of fatty acid oxidation. Br J Exp Pathol 1986; 67:773-82; PMID:3099821
  • Babidge W, Millard S, Roediger WE. Sulfides impair short chain fatty acid beta-oxidation at acyl-CoA dehydrogenase level in colonocytes: Implications for ulcerative colitis. Mol Cell Biochem 1998; 181:117-124; PMID:9562248; http://dx.doi.org/10.1023/A:1006838231432
  • Roedinger WE, Lawson MJ, Kwok V, Kerr Grant A, Pannall PR. Colonic bicarbonate output as a test of disease activity in ulcerative colitis. J Clin Pathol 1984; 37:704-7; PMID:6327778; http://dx.doi.org/10.1136/jcp.37.6.704
  • Den Hond E, Hiele E, Ghoos Y, Rutgeerts P. In vivo colonic butyrate metabolism in extensive ulcerative colitis. Gastroenterology 1998; 115(3):584-90; PMID:9721155; http://dx.doi.org/10.1016/S0016-5085(98)70137-4
  • Levitt MD, Springfield J, Furne J, Koenig T, Suarez F. Physiology of sulfide in the rat colon: use of bismuth to assess colonic sulfide production. J Appl Physiol 2002; 92:L1655-60; http://dx.doi.org/10.1152/japplphysiol.00907.2001
  • Christl SU, Eisner HD, Dusel G, Kasper H, Sheppach W. Antagonistic effects of sulfide and butyrate on proliferation of colonic mucosa: A potential role for these agents in the pathogenesis of ulcerative colitis. Dig Dis Sci 1996; 41:2477-81; PMID:9011461; http://dx.doi.org/10.1007/BF02100146
  • Harig JM, Soergel KH, Komorowski RA, Wood CM. Treatment of diversion colitis with short chain fatty acid irrigation. N Engl J Med 1989; 320:23-6; PMID:2909876; http://dx.doi.org/10.1056/NEJM198901053200105
  • Sheppach W, Sommer H, Kirchner T, Paganelli GM, Bartram P, Christl S, Richter F, Dusel G, Kasper H. Effect of butyrate enemas on the colonic mucosa in distal ulcerative colitis. Gastroenterology 1992; 103:51-56; PMID:1612357
  • Shaw L, Engel PC. CoA-persulphide: a possible in vivo inhibitor of mammalian short-chain acyl-CoA dehydrogenase. Biochim Biophys Acta 1987; 919(2):171-4; PMID:3580384; http://dx.doi.org/10.1016/0005-2760(87)90204-9
  • Wilson K, Mudra M, Furne J, Levitt M. Differentiation of the roles of sulfide oxidase and rhodanese in the detoxification of sulfide by the colonic mucosa. Dig Dis Sci 2008; 53:277-283; PMID:17551834; http://dx.doi.org/10.1007/s10620-007-9854-9
  • Theissen U, Hoffmeister M, Grieshaber M, Martin W. Single eubacterial origin of eukaryotic sulfide:quinone oxidoreductase, a mitochondrial enzyme conserved from the early evolution of eukaryotes during anoxic and sulfidic times. Mol Biol Evol 2003; 20:1564-74; PMID:12832624; http://dx.doi.org/10.1093/molbev/msg174
  • Gouben M, Andriamihaja M, Nübel T, Blachier F, Bouillaud F. Sulfide, the first inorganic substrate for human cells. FASEB J 2007; 21:1699-1706; PMID:17314140; http://dx.doi.org/10.1096/fj.06-7407com
  • Ramasamy S, Singh S, Taniere P, Langman MJS, Eggo MC. Sulfide-detoxifying enzymes in the human colon are decreased in cancer and upregulated in differentiation. Am J Physiol Gastrointest Liver Physiol 2006; 291:G288-G296; PMID:16500920; http://dx.doi.org/10.1152/ajpgi.00324.2005
  • Toden S, Bird AR, Topping, DL, Conlon MA. Resistant starch prevents colonic DNA damage induced by high dietary cooked red meat or casein in rats. Cancer Biol Ther 2006; 5:267-72; PMID:16410726; http://dx.doi.org/10.4161/cbt.5.3.2382
  • Toden S, Bird AR, Topping DL, Conlon MA. High red meat diets induce greater numbers of colonic DNA double-strand breaks than white meat in rats: attenuation by high-amylose maize starch. Carcinogenesis 2007; 28:2355-62; PMID:17916911; http://dx.doi.org/10.1093/carcin/bgm216
  • Kanazawa K, Konishi F, Mitsuoka T, Terada A, Itoh K, Narushima S, Kumemura M, Kimura H. Factors influencing the development of sigmoid colon cancer. Bacteriologic and biochemical studies. Cancer 1996; 77(8 Suppl):1701-6; PMID:8608565; http://dx.doi.org/10.1002/(SICI)1097-0142(19960415)77:8+%3c1701::AID-CNCR18%3e3.0.CO;2-1
  • Yamada M, Ohkusa T, Okayasu I. Occurrence of dysplasia and adenocarcinoma after experimental chronic ulcerative colitis in hamsters induced by dextran sulphate sodium. Gut 1992; 33(11):1521-27; PMID:1333439; http://dx.doi.org/10.1136/gut.33.11.1521
  • Castellarin M, Warren RL, Freeman JD, Dreolini L, Krzywinski M, Strauss J, Barnes R, Watson P, Allen-Vercoe E, Moore RA, et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res 2012; 22:299-306; PMID:22009989; http://dx.doi.org/10.1101/gr.126516.111
  • Kostic AD, Chun E, Robertson L, Glickman JN, Gallini CA, Michaud M, Clancy TE, Chung DC, Lochhead P, Hold GL, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 2013; 14:207-15; PMID:23954159; http://dx.doi.org/10.1016/j.chom.2013.07.007
  • Deplancke B, Gaskins HR. Hydrogen sulfide induces serum-independent cell cycle entry in nontransformed rat intestinal epithelial cells. FASEB J 2003; 17:1310-12; PMID:12738807
  • Attene-Ramos MS, Nava GM, Muellner MG, Wagner ED, Plewa MJ, Gaskins HR. DNA damage and toxicogenomic analyses of hydrogen sulfide in human intestinal epithelial FHs 74 Int cells. Environ Mol Mutagen 2010; 51:304-14; PMID:20120018
  • Attene-Ramos MS, Wagner ED, Plewa MJ, Gaskins HR. Evidence that hydrogen sulfide is a genotoxic agent. Mol Cancer Res 2006; 4:9-14; PMID:16446402; http://dx.doi.org/10.1158/1541-7786.MCR-05-0126
  • Attene-Ramos MS, Wagner ED, Gaskins HR, Plewa MJ. Hydrogen sulfide induces direct radical-associated DNA damage. Mol Cancer Res 2007; 5(5):455-59; PMID:17475672; http://dx.doi.org/10.1158/1541-7786.MCR-06-0439
  • Van Eldere J, Celis P, De Pauw G, Lesaffre E, Eyssen H. Tauroconjugation of cholic acid stimulates 7alpha-dehydroxylation by fecal bacteria. Appl Environ Microbiol 1996; 62(2):656-61; PMID:8593067
  • Narushima S, Itoha K, Miyamoto Y, Park SH, Nagata K, Kuruma K, Uchida K. Deoxycholic acid formation in gnotobiotic mice associated with human intestinal bacteria. Lipids 2006; 41(9):835-43; PMID:17152920; http://dx.doi.org/10.1007/s11745-006-5038-1
  • Stenman LK, Holma R, Forsgård R, Gylling H, Korpela R. Higher fecal bile acid hydrophobicity is associated with exacerbation of dextran sodium sulfate colitis in mice. J Nutr 2013; 143(11):1691-97; PMID:24047703; http://dx.doi.org/10.3945/jn.113.180810
  • Craciun S, Balskus EP. Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme. Proc Natl Acad Sci USA 2012; 109(52):21307-12; PMID:23151509; http://dx.doi.org/10.1073/pnas.1215689109
  • Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein AE, Britt EB, Fu X, Chung YM, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011; 472(7341):57-63; PMID:21475195; http://dx.doi.org/10.1038/nature09922

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.