5,794
Views
303
CrossRef citations to date
0
Altmetric
Review

Bacterial species involved in the conversion of dietary flavonoids in the human gut

&
Pages 216-234 | Received 03 Feb 2016, Accepted 19 Feb 2016, Published online: 07 Apr 2016

References

  • Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 2006; 124:837-48; PMID:16497592; http://dx.doi.org/10.1016/j.cell.2006.02.017
  • Rawls JF, Mahowald MA, Ley RE, Gordon JI. Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection. Cell 2006; 127:423-33; PMID:17055441; http://dx.doi.org/10.1016/j.cell.2006.08.043
  • Marchesi JR, Adams DH, Fava F, Hermes GD, Hirschfield GM, Hold G, Quraishi MN, Kinross J, Smidt H, Tuohy KM, et al. The gut microbiota and host health: a new clinical frontier. Gut 2016; 65:330-9; PMID:26338727; http://dx.doi.org/10.1136/gutjnl-2015-309990
  • Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010; 464:59-65; PMID:20203603; http://dx.doi.org/10.1038/nature08821
  • Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH, Chinwalla AT, Creasy HH, Earl AM, FitzGerald MG, Fulton RS, et al. Structure, function and diversity of the healthy human microbiome. Nature 2012; 486:207-14; PMID:22699609; http://dx.doi.org/10.1038/nature11234
  • Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature 2007; 449:804-10; PMID:17943116; http://dx.doi.org/10.1038/nature06244
  • Hehemann JH, Correc G, Barbeyron T, Helbert W, Czjzek M, Michel G. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 2010; 464:908-12; PMID:20376150; http://dx.doi.org/10.1038/nature08937
  • Lampe JW, Karr SC, Hutchins AM, Slavin JL. Urinary equol excretion with a soy challenge: influence of habitual diet. Proc Soc Exp Biol Med 1998; 217:335-9; PMID: 9492344; http://dx.doi.org/10.3181/00379727-217-44241
  • Del Rio D, Rodriguez-Mateos A, Spencer JP, Tognolini M, Borges G, Crozier A. Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal 2013; 18:1818-92; PMID:22794138; http://dx.doi.org/10.1089/ars.2012.4581
  • Rodriguez-Mateos A, Vauzour D, Krueger CG, Shanmuganayagam D, Reed J, Calani L, Mena P, Del Rio D, Crozier A. Bioavailability, bioactivity and impact on health of dietary flavonoids and related compounds: an update. Arch Toxicol 2014; 88:1803-53; PMID:25182418; http://dx.doi.org/10.1007/s00204-014-1330-7
  • Duenas M, Munoz-Gonzalez I, Cueva C, Jimenez-Giron A, Sanchez-Patan F, Santos-Buelga C, Moreno-Arribas MV, Bartolome B. A survey of modulation of gut microbiota by dietary polyphenols. Biomed Res Int 2015; 2015:850902; PMID:25793210; http://dx.doi.org/10.1155/2015/850902
  • Moco S, Martin FP, Rezzi S. Metabolomics view on gut microbiome modulation by polyphenol-rich foods. J Proteome Res 2012; 11:4781-90; PMID:22905879; http://dx.doi.org/10.1021/pr300581s
  • Duda-Chodak A, Tarko T, Satora P, Sroka P. Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: a review. Eur J Nutr 2015; 54:325-41; PMID:25672526; http://dx.doi.org/10.1007/s00394-015-0852-y
  • Chiou YS, Wu JC, Huang Q, Shahidi F, Wang YJ, Ho CT, Pan MH. Metabolic and colonic microbiota transformation may enhance the bioactivities of dietary polyphenols. J Funct Foods 2014; 7:3-25; http://dx.doi.org/10.1016/j.jff.2013.08.006
  • Cook NC, Samman S. Flavonoids - chemistry, metabolism, cardioprotective effects, and dietary sources. J Nutr Biochem 1996; 7:66-76; http://dx.doi.org/10.1016/0955-2863(95)00168-9
  • Schneider H, Schwiertz A, Collins MD, Blaut M. Anaerobic transformation of quercetin-3-glucoside by bacteria from the human intestinal tract. Arch Microbiol 1999; 171:81-91; PMID:9914304; http://dx.doi.org/10.1007/s002030050682
  • Schneider H, Blaut M. Anaerobic degradation of flavonoids by Eubacterium ramulus. Arch Microbiol 2000; 173:71-5; PMID:10648107; http://dx.doi.org/10.1007/s002030050010
  • Hidalgo M, Oruna-Concha MJ, Kolida S, Walton GE, Kallithraka S, Spencer JP, de Pascual-Teresa S. Metabolism of anthocyanins by human gut microflora and their influence on gut bacterial growth. J Agric Food Chem 2012; 60:3882-90; PMID:22439618; http://dx.doi.org/10.1021/jf3002153
  • Schröder C, Matthies A, Engst W, Blaut M, Braune A. Identification and expression of genes involved in the conversion of daidzein and genistein by the equol-forming bacterium Slackia isoflavoniconvertens. Appl Environ Microbiol 2013; 79:3494-502; PMID:23542626; http://dx.doi.org/10.1128/AEM.03693-12
  • Braune A, Gütschow M, Engst W, Blaut M. Degradation of quercetin and luteolin by Eubacterium ramulus. Appl Environ Microbiol 2001; 67:5558-67; PMID:11722907; http://dx.doi.org/10.1128/AEM.67.12.5558-5567.2001
  • Schoefer L, Mohan R, Schwiertz A, Braune A, Blaut M. Anaerobic degradation of flavonoids by Clostridium orbiscindens. Appl Environ Microbiol 2003; 69:5849-54; PMID:14532034; http://dx.doi.org/10.1128/AEM.69.10.5849-5854.2003
  • Brune A, Schink B. Phloroglucinol pathway in the strictly anaerobic Pelobacter acidigallici: fermentation of trihydroxybenzenes to acetate via triacetic acid. Arch Microbiol 1992; 157:417-24; http://dx.doi.org/10.1007/BF00249098
  • Krumholz LR, Crawford RL, Hemling ME, Bryant MP. Metabolism of gallate and phloroglucinol in Eubacterium oxidoreducens via 3-hydroxy-5-oxohexanoate. J Bacteriol 1987; 169:1886-90; PMID:3571153
  • Marin L, Miguelez EM, Villar CJ, Lombo F. Bioavailability of dietary polyphenols and gut microbiota metabolism: antimicrobial properties. Biomed Res Int 2015; 2015:905215; PMID:25802870; http://dx.doi.org/10.1155/2015/905215
  • Day AJ, Canada FJ, Diaz JC, Kroon PA, McLauchlan R, Faulds CB, Plumb GW, Morgan MR, Williamson G. Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. FEBS Lett 2000; 468:166-70; PMID:10692580; http://dx.doi.org/10.1016/S0014-5793(00)01211-4
  • Nemeth K, Plumb GW, Berrin JG, Juge N, Jacob R, Naim HY, Williamson G, Swallow DM, Kroon PA. Deglycosylation by small intestinal epithelial cell β-glucosidases is a critical step in the absorption and metabolism of dietary flavonoid glycosides in humans. Eur J Nutr 2003; 42:29-42; PMID:12594539; http://dx.doi.org/10.1007/s00394-003-0397-3
  • Miyake Y, Yamamoto K, Osawa T. Metabolism of antioxidant in lemon fruit (Citrus limon BURM. f.) by human intestinal bacteria. J Agric Food Chem 1997; 45:3738-42; http://dx.doi.org/10.1021/jf970403r
  • Raimondi S, Roncaglia L, De Lucia M, Amaretti A, Leonardi A, Pagnoni UM, Rossi M. Bioconversion of soy isoflavones daidzin and daidzein by Bifidobacterium strains. Appl Microbiol Biotechnol 2009; 81:943-50; PMID:18820905; http://dx.doi.org/10.1007/s00253-008-1719-4
  • Avila M, Hidalgo M, Sanchez-Moreno C, Pelaez C, Requena T, De Pascual-Teresa S. Bioconversion of anthocyanin glycosides by bifidobacteria and Lactobacillus. Food Res Internat 2009; 42:1453-61; http://dx.doi.org/10.1016/j.foodres.2009.07.026
  • Tsangalis D, Ashton JF, McGill AEJ, Shah NP. Enzymic transformation of isoflavone phytoestrogens in soymilk by β-glucosidase-producing bifidobacteria. J Food Science 2002; 67:3104-13; http://dx.doi.org/10.1111/j.1365-2621.2002.tb08866.x
  • Marotti I, Bonetti A, Biavati B, Catizone P, Dinelli G. Biotransformation of common bean (Phaseolus vulgaris L.) flavonoid glycosides by Bifidobacterium species from human intestinal origin. J Agric Food Chem 2007; 55:3913-9; PMID:17439230; http://dx.doi.org/10.1021/jf062997g
  • Bang SH, Hyun YJ, Shim J, Hong SW, Kim DH. Metabolism of rutin and poncirin by human intestinal microbiota and cloning of their metabolizing α-L-rhamnosidase from Bifidobacterium dentium. J Microbiol Biotechnol 2015; 25:18-25; PMID:25179902; http://dx.doi.org/10.4014/jmb.1404.04060
  • Braune A, Blaut M. Intestinal bacterium Eubacterium cellulosolvens deglycosylates flavonoid C- and O-glucosides. Appl Environ Microbiol 2012; 78:8151-3; PMID:22961906; http://dx.doi.org/10.1128/AEM.02115-12
  • Braune A, Engst W, Blaut M. Degradation of neohesperidin dihydrochalcone by human intestinal bacteria. J Agric Food Chem 2005; 53:1782-90; PMID:15740074; http://dx.doi.org/10.1021/jf0484982
  • Schoefer L, Mohan R, Braune A, Birringer M, Blaut M. Anaerobic C-ring cleavage of genistein and daidzein by Eubacterium ramulus. FEMS Microbiol Lett 2002; 208:197-202; PMID:11959436; http://dx.doi.org/10.1111/j.1574-6968.2002.tb11081.x
  • Kim M, Kim N, Han J. Metabolism of Kaempferia parviflora polymethoxyflavones by human intestinal bacterium Blautia sp. MRG-PMF1. J Agric Food Chem 2014; 62:12377-83; PMID:25437273; http://dx.doi.org/10.1021/jf504074n
  • Braune A, Blaut M. Deglycosylation of puerarin and other aromatic C-glucosides by a newly isolated human intestinal bacterium. Environ Microbiol 2011; 13:482-94; PMID:20946528; http://dx.doi.org/10.1111/j.1462-2920.2010.02352.x
  • Liu Y, Dai Y, Xun L, Hu M. Enteric disposition and recycling of flavonoids and ginkgo flavonoids. J Altern Complement Med 2003; 9:631-40; PMID:14629841; http://dx.doi.org/10.1089/107555303322524481
  • Shin NR, Moon JS, Shin SY, Li L, Lee YB, Kim TJ, Han NS. Isolation and characterization of human intestinal Enterococcus avium EFEL009 converting rutin to quercetin. Lett Appl Microbiol 2016; 62:68-74; PMID:26505733; http://dx.doi.org/10.1111/lam.12512
  • Kim M, Lee J, Han J. Deglycosylation of isoflavone C-glycosides by newly isolated human intestinal bacteria. J Sci Food Agric 2015; 95:1925-31; PMID:25199800; http://dx.doi.org/10.1002/jsfa.6900
  • Schloissnig S, Arumugam M, Sunagawa S, Mitreva M, Tap J, Zhu A, Waller A, Mende DR, Kultima JR, Martin J, et al. Genomic variation landscape of the human gut microbiome. Nature 2013; 493:45-50; PMID:23222524; http://dx.doi.org/10.1038/nature11711
  • Keppler K, Humpf HU. Metabolism of anthocyanins and their phenolic degradation products by the intestinal microflora. Bioorg Med Chem 2005; 13:5195-205; PMID:15963727; http://dx.doi.org/10.1016/j.bmc.2005.05.003
  • Michlmayr H, Kneifel W. β-Glucosidase activities of lactic acid bacteria: mechanisms, impact on fermented food and human health. FEMS Microbiol Lett 2014; 352:1-10; PMID:24330034; http://dx.doi.org/10.1111/1574-6968.12348
  • Braune A, Engst W, Blaut M. Identification and functional expression of genes encoding flavonoid O- and C-glycosidases in intestinal bacteria. Environ Microbiol 2015; PMID:25845411; http://dx.doi/org/10.1111/1462-2920.12864
  • Schneider H, Simmering R, Hartmann L, Pforte H, Blaut M. Degradation of quercetin-3-glucoside in gnotobiotic rats associated with human intestinal bacteria. J Appl Microbiol 2000; 89:1027-37; PMID:11123476; http://dx.doi.org/10.1046/j.1365-2672.2000.01209.x
  • Beekwilder J, Marcozzi D, Vecchi S, de Vos R, Janssen P, Francke C, van Hylckama Vlieg J, Hall RD. Characterization of rhamnosidases from Lactobacillus plantarum and Lactobacillus acidophilus. Appl Environ Microbiol 2009; 75:3447-54; PMID:19346347; http://dx.doi.org/10.1128/AEM.02675-08
  • Avila M, Jaquet M, Moine D, Requena T, Pelaez C, Arigoni F, Jankovic I. Physiological and biochemical characterization of the two α-L-rhamnosidases of Lactobacillus plantarum NCC245. Microbiology 2009; 155:2739-49; PMID:19423635; http://dx.doi.org/10.1099/mic.0.027789-0
  • Amaretti A, Raimondi S, Leonardi A, Quartieri A, Rossi M. Hydrolysis of the rutinose-conjugates flavonoids rutin and hesperidin by the gut microbiota and bifidobacteria. Nutrients 2015; 7:2788-800; PMID:25875120; http://dx.doi.org/10.3390/nu7042788
  • Jin JS, Nishihata T, Kakiuchi N, Hattori M. Biotransformation of C-glucosylisoflavone puerarin to estrogenic (3S)-equol in co-culture of two human intestinal bacteria. Biol Pharm Bull 2008; 31:1621-5; PMID:18670101; http://dx.doi.org/10.1248/bpb.31.1621
  • Xu J, Qian D, Jiang S, Guo J, Shang EX, Duan JA, Yang J. Application of ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry to determine the metabolites of orientin produced by human intestinal bacteria. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 944:123-7; PMID:24316522; http://dx.doi.org/10.1016/j.jchromb.2013.11.002
  • Possemiers S, Heyerick A, Robbens V, De Keukeleire D, Verstraete W. Activation of proestrogens from hops (Humulus lupulus L.) by intestinal microbiota; conversion of isoxanthohumol into 8-prenylnaringenin. J Agric Food Chem 2005; 53:6281-8; PMID:16076107; http://dx.doi.org/10.1021/jf0509714
  • Possemiers S, Rabot S, Espin JC, Bruneau A, Philippe C, Gonzalez-Sarrias A, Heyerick A, Tomas-Barberan FA, De Keukeleire D, Verstraete W. Eubacterium limosum activates isoxanthohumol from hops (Humulus lupulus L.) into the potent phytoestrogen 8-prenylnaringenin in vitro and in rat intestine. J Nutr 2008; 138:1310-6; PMID:18567753
  • Hur H, Rafii F. Biotransformation of the isoflavonoids biochanin A, formononetin, and glycitein by Eubacterium limosum. FEMS Microbiol Lett 2000; 192:21-5; PMID:11040423; http://dx.doi.org/10.1111/j.1574-6968.2000.tb09353.x
  • Nikolic D, Li Y, Chadwick LR, Pauli GF, van Breemen RB. Metabolism of xanthohumol and isoxanthohumol, prenylated flavonoids from hops (Humulus lupulus L.), by human liver microsomes. J Mass Spectrom 2005; 40:289-99; PMID:15712367; http://dx.doi.org/10.1002/jms.753
  • Hanske L, Loh G, Sczesny S, Blaut M, Braune A. Recovery and metabolism of xanthohumol in germ-free and human microbiota-associated rats. Mol Nutr Food Res 2010; 54:1405-13; PMID:20397197; http://dx.doi.org/10.1002/mnfr.200900517
  • Wang LQ, Meselhy MR, Li Y, Nakamura N, Min BS, Qin GW, Hattori M. The heterocyclic ring fission and dehydroxylation of catechins and related compounds by Eubacterium sp. strain SDG-2, a human intestinal bacterium. Chem Pharm Bull (Tokyo) 2001; 49:1640-3; PMID:11767089; http://dx.doi.org/10.1248/cpb.49.1640
  • Jin JS, Hattori M. Isolation and characterization of a human intestinal bacterium Eggerthella sp. CAT-1 capable of cleaving the C-ring of (+)-catechin and (−)-epicatechin, followed by p-dehydroxylation of the B-ring. Biol Pharm Bull 2012; 35:2252-6; PMID:23207778; http://dx.doi.org/10.1248/bpb.b12-00726
  • Zhao M, Du L, Tao J, Qian D, Shang EX, Jiang S, Guo J, Liu P, Su SL, Duan JA. Determination of metabolites of diosmetin-7-O-glucoside by a newly isolated Escherichia coli from human gut using UPLC-Q-TOF/MS. J Agric Food Chem 2014; 62:11441-8; PMID:25382172; http://dx.doi.org/10.1021/jf502676j
  • Herles C, Braune A, Blaut M. First bacterial chalcone isomerase isolated from Eubacterium ramulus. Arch Microbiol 2004; 181:428-34; PMID:15127184; http://dx.doi.org/10.1007/s00203-004-0676-2
  • Gall M, Thomsen M, Peters C, Pavlidis IV, Jonczyk P, Grunert PP, Beutel S, Scheper T, Gross E, Backes M, et al. Enzymatic conversion of flavonoids using bacterial chalcone isomerase and enoate reductase. Angew Chem Int Ed 2014; 53:1439-42; http://dx.doi.org/10.1002/anie.201306952
  • Thomsen M, Tuukkanen A, Dickerhoff J, Palm GJ, Kratzat H, Svergun DI, Weisz K, Bornscheuer UT, Hinrichs W. Structure and catalytic mechanism of the evolutionarily unique bacterial chalcone isomerase. Acta Crystallogr 2015; D71:907-17
  • Schoefer L, Braune A, Blaut M. Cloning and expression of a phloretin hydrolase gene from Eubacterium ramulus and characterization of the recombinant enzyme. Appl Environ Microbiol 2004; 70:6131-7; PMID:15466559; http://dx.doi.org/10.1128/AEM.70.10.6131-6137.2004
  • Simmering R, Kleessen B, Blaut M. Quantification of the flavonoid-degrading bacterium Eubacterium ramulus in human fecal samples with a species-specific oligonucleotide hybridization probe. Appl Environ Microbiol 1999; 65:3705-9; PMID:10427069
  • Jin JS, Kitahara M, Sakamoto M, Hattori M, Benno Y. Slackia equolifaciens sp. nov., a human intestinal bacterium capable of producing equol. Int J Syst Evol Microbiol 2010; 60:1721-4; PMID:19734283; http://dx.doi.org/10.1099/ijs.0.016774-0
  • Shimada Y, Yasuda S, Takahashi M, Hayashi T, Miyazawa N, Sato I, Abiru Y, Uchiyama S, Hishigaki H. Cloning and expression of a novel NADP(H)-dependent daidzein reductase, an enzyme involved in the metabolism of daidzein, from equol-producing Lactococcus strain 20–92. Appl Environ Microbiol 2010; 76:5892-901; PMID:20639368; http://dx.doi.org/10.1128/AEM.01101-10
  • Yokoyama S, Suzuki T. Isolation and characterization of a novel equol-producing bacterium from human feces. Biosci Biotechnol Biochem 2008; 72:2660-6; PMID:18838805; http://dx.doi.org/10.1271/bbb.80329
  • Maruo T, Sakamoto M, Ito C, Toda T, Benno Y. Adlercreutzia equolifaciens gen. nov., sp. nov., an equol-producing bacterium isolated from human faeces, and emended description of the genus Eggerthella. Int J Syst Evol Microbiol 2008; 58:1221-7; PMID:18450717; http://dx.doi.org/10.1099/ijs.0.65404-0
  • Matthies A, Blaut M, Braune A. Isolation of a human intestinal bacterium capable of daidzein and genistein conversion. Appl Environ Microbiol 2009; 75:1740-4; PMID:19139227; http://dx.doi.org/10.1128/AEM.01795-08
  • Tsuji H, Moriyama K, Nomoto K, Miyanaga N, Akaza H. Isolation and characterization of the equol-producing bacterium Slackia sp. strain NATTS. Arch Microbiol 2010; 192:279-87; PMID:20237913; http://dx.doi.org/10.1007/s00203-010-0546-z
  • Matthies A, Loh G, Blaut M, Braune A. Daidzein and genistein are converted to equol and 5-hydroxy-equol by human intestinal Slackia isoflavoniconvertens in gnotobiotic rats. J Nutr 2012; 142:40-6; PMID:22113864; http://dx.doi.org/10.3945/jn.111.148247
  • Shimada Y, Takahashi M, Miyazawa N, Abiru Y, Uchiyama S, Hishigaki H. Identification of a novel dihydrodaidzein racemase, that is essential for equol biosynthesis from daidzein in Lactococcus strain 20–92. Appl Environ Microbiol 2012; 78:4902-7; PMID:22582059; http://dx.doi.org/10.1128/AEM.00410-12
  • Shimada Y, Takahashi M, Miyazawa N, Ohtani T, Abiru Y, Uchiyama S, Hishigaki H. Identification of two novel reductases involved in equol biosynthesis in Lactococcus strain 20–92. J Mol Microbiol Biotechnol 2011; 21:160-72; PMID:22286043; http://dx.doi.org/10.1159/000335049
  • Tsuji H, Moriyama K, Nomoto K, Akaza H. Identification of an enzyme system for daidzein-to-equol conversion in Slackia sp. strain NATTS. Appl Environ Microbiol 2012; 78:1228-36; PMID:22179235; http://dx.doi.org/10.1128/AEM.06779-11
  • Smillie CS, Smith MB, Friedman J, Cordero OX, David LA, Alm EJ. Ecology drives a global network of gene exchange connecting the human microbiome. Nature 2011; 480:241-4; PMID:22037308; http://dx.doi.org/10.1038/nature10571
  • Tamura M, Tsushida T, Shinohara K. Isolation of an isoflavone-metabolizing, Clostridium-like bacterium, strain TM-40, from human faeces. Anaerobe 2007; 13:32-5; PMID:17113326; http://dx.doi.org/10.1016/j.anaerobe.2006.10.001
  • Wang XL, Hur HG, Lee JH, Kim KT, Kim SI. Enantioselective synthesis of S-equol from dihydrodaidzein by a newly isolated anaerobic human intestinal bacterium. Appl Environ Microbiol 2005; 71:214-9; PMID:15640190; http://dx.doi.org/10.1128/AEM.71.1.214-219.2005
  • Wang XL, Kim KT, Lee JH, Hur HG, Kim SI. C-ring cleavage of isoflavones daidzein and genistein by a newly-isolated human intestinal bacterium Eubacterium ramulus Julong 601. J Microbiol Biotechnol 2004; 14:766-71
  • Yokoyama S, Niwa T, Osawa T, Suzuki T. Characterization of an O-desmethylangolensin-producing bacterium isolated from human feces. Arch Microbiol 2010; 192:15-22; PMID:19904524; http://dx.doi.org/10.1007/s00203-009-0524-5
  • Kutschera M, Engst W, Blaut M, Braune A. Isolation of catechin-converting human intestinal bacteria. J Appl Microbiol 2011; 111:165-75; PMID:21457417; http://dx.doi.org/10.1111/j.1365-2672.2011.05025.x
  • Takagaki A, Nanjo F. Biotransformation of (−)-epigallocatechin and (−)-gallocatechin by intestinal bacteria involved in isoflavone metabolism. Biol Pharm Bull 2015; 38:325-30; PMID:25747993; http://dx.doi.org/10.1248/bpb.b14-00646
  • Sanchez-Patan F, Tabasco R, Monagas M, Requena T, Pelaez C, Moreno-Arribas MV, Bartolome B. Capability of Lactobacillus plantarum IFPL935 to catabolize flavan-3-ol compounds and complex phenolic extracts. J Agric Food Chem 2012; 60:7142-51; PMID:22646528; http://dx.doi.org/10.1021/jf3006867
  • Deprez S, Brezillon C, Rabot S, Philippe C, Mila I, Lapierre C, Scalbert A. Polymeric proanthocyanidins are catabolized by human colonic microflora into low-molecular-weight phenolic acids. J Nutr 2000; 130:2733-8; PMID:11053514
  • Appeldoorn MM, Vincken JP, Aura AM, Hollman PC, Gruppen H. Procyanidin dimers are metabolized by human microbiota with 2-(3,4-dihydroxyphenyl)acetic acid and 5-(3,4-dihydroxyphenyl)-γ-valerolactone as the major metabolites. J Agric Food Chem 2009; 57:1084-92; PMID:19191673; http://dx.doi.org/10.1021/jf803059z
  • Stoupi S, Williamson G, Drynan JW, Barron D, Clifford MN. A comparison of the in vitro biotransformation of (−)-epicatechin and procyanidin B2 by human faecal microbiota. Mol Nutr Food Res 2010; 54:747-59; PMID:19943260; http://dx.doi.org/10.1002/mnfr.200900123
  • Bokkenheuser VD, Shackleton CH, Winter J. Hydrolysis of dietary flavonoid glycosides by strains of intestinal Bacteroides from humans. Biochem J 1987; 248:953-6; PMID:3435494; http://dx.doi.org/10.1042/bj2480953
  • Winter J, Popoff MR, Grimont P, Bokkenheuser VD. Clostridium orbiscindens sp. nov., a human intestinal bacterium capable of cleaving the flavonoid C-ring. Int J Syst Bacteriol 1991; 41:355-7; PMID:1883711; http://dx.doi.org/10.1099/00207713-41-3-355
  • Hur HG, Lay JO, Jr, Beger RD, Freeman JP, Rafii F. Isolation of human intestinal bacteria metabolizing the natural isoflavone glycosides daidzin and genistin. Arch Microbiol 2000; 174:422-8; PMID:11195098; http://dx.doi.org/10.1007/s002030000222

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.