3,363
Views
4
CrossRef citations to date
0
Altmetric
Research Paper/Report

Bile acid oxidation by Eggerthella lenta strains C592 and DSM 2243T

, , , , ORCID Icon, , ORCID Icon, , & show all
Pages 523-539 | Received 16 Jan 2018, Accepted 19 Mar 2018, Published online: 24 May 2018

References

  • Zhou H, Hylemon PB. Bile acids are nutrient signaling hormones. Steroids. 2014;86:62–68. doi:10.1016/j.steroids.2014.04.016. PMID:24819989.
  • Wahlström A, Sayin SI, Marschall HU, Bäckhed F. Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism. Cell Metab. 2016;24(1):41–50. doi:10.1016/j.cmet.2016.05.005. PMID:27320064.
  • Ridlon JM, Harris SC, Bhowmik S, Kang DJ, Hylemon PB. Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes. 2016;7(1):22–39. doi:10.1080/19490976.2015.1127483. PMID:26939849.
  • Hofmann AF. Chemistry and enterohepatic circulation of bile acids. Hepatology. 1984;4(5 Suppl):4S–14S. doi:10.1002/hep.1840040803. PMID:6384004.
  • Hofmann AF, Hagey LR. Key discoveries in bile acid chemistry and biology and their clinical applications: history of the last eight decades. J Lipid Res. 2014;55(8):1553–95. doi:10.1194/jlr.R049437. PMID:24838141.
  • Islam KB, Fukiya S, Hagio M, Fujii N, Ishizuka S, Ooka T, Ogura Y, Hayashi T, Yokota A. Bile acid is a host factor that regulates the composition of the cecal microbiota in rats. Gastroenterology. 2011;141(5):1773–81. doi:10.1053/j.gastro.2011.07.046. PMID:21839040.
  • Inagaki T, Moschetta A, Lee YK, Peng L, Zhao G, Downes M, Yu RT, Shelton JM, Richardson JA, Repa JJ, Mangelsdorf DJ, Kliewer SA. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc Natl Acad Sci U S A. 2006;103(10):3920–25. doi:10.1073/pnas.0509592103. PMID:16473946.
  • Ridlon JM, Bajaj JS. The human gut sterolbiome: bile acid-microbiome endocrine aspects and therapeutics. Acta Pharm Sin B. 2015;5(2):99–105. doi:10.1016/j.apsb.2015.01.006. PMID:26579434.
  • Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res. 2006;47(2):241–59. doi:10.1194/jlr.R500013-JLR200. PMID:16299351.
  • Ridlon JM, Kang DJ, Hylemon PB. Isolation and characterization of a bile acid inducible 7alpha-dehydroxylating operon in Clostridium hylemonae TN271. Anaerobe. 2010;16(2):137–46. doi:10.1016/j.anaerobe.2009.05.004. PMID:19464381.
  • Wells JE, Hylemon PB. Identification and characterization of a bile acid 7alpha-dehydroxylation operon in Clostridium sp. strain TO-931, a highly active 7alpha-dehydroxylating strain isolated from human feces. Appl Environ Microbiol. 2000;66(3):1107–13. doi:10.1128/AEM.66.3.1107-1113.2000. PMID:10698778.
  • Devlin AS, Fischbach MA. A biosynthetic pathway for a prominent class of microbiota-derived bile acids. Nat Chem Biol. 2015;11(9):658–90. doi:10.1038/nchembio.1864.
  • Kisiela M, Skarka A, Ebert B, Maser E. Hydroxysteroid dehydrogenases (HSDs) in bacteria: a bioinformatic perspective. J Steroid Biochem Mol Biol. 2012;129(1-2):31–46. doi:10.1016/j.jsbmb.2011.08.002. PMID:21884790.
  • Hofmann AF, Roda A. Physicochemical properties of bile acids and their relationship to biological properties: an overview of the problem. J Lipid Res. 1984;25(13):1477–89. PMID:6397555.
  • Kallberg Y, Opperman U, Persson B. Classification of the short-chain dehydrogenase/reductase superfamily using hidden Markov models. FEBS J. 2010;277(10):2375–86. doi:10.1111/j.1742-4658.2010.07656.x. PMID:20423462.
  • Midtvedt T, Norman A. Bile acid transformations by microbial strains belonging to genera found in intestinal contents. Acta Path Microbiol Scandinav. 1967;71:629–38. doi:10.1111/j.1699-0463.1967.tb05183.x.
  • Edenharder R, Mielek K. Epimerization, oxidation and reduction of bile acids by Eubacterium lentum. System Appl Microbiol. 1984;5:287–98. doi:10.1016/S0723-2020(84)80031-4.
  • Bokkenheuser VD, Winter J. Biotransformation of steroid hormones by gut bacteria. Am J Clin Nutr. 1980;33:2502–6. doi:10.1093/ajcn/33.11.2502. PMID:7001886.
  • Hirano S, Masuda N. Transformation of bile acids by Eubacterium lentum. Appl Environ Microbiol. 1981;42(5):912–15. PMID:6947718.
  • Hylemon PB, Melone PD, Franklund CV, Lund E, Bjorkhem I. Mechanism of intestinal 7alpha-dehydroxylation of cholic acid: evidence that allo-deoxycholic acid is an inducible side-product. J Lipid Res. 1991;32:89–95. PMID:2010697.
  • Ridlon JM, Ikegawa S, Alves JM, Zhou B, Kobayashi A, Iida T, Mitamura K, Tanabe G, Serrano M, De Guzman A, et al. Clostridium scindens: a human gut microbe with a high potential to convert glucocorticoids into androgens. J Lipid Res. 2013;54(9):2437–49. doi:10.1194/jlr.M038869. PMID:23772041.
  • Kang DJ, Ridlon JM, Moore DR, Barnes S2nd, Hylemon PB. Clostridium scindens baiCD and baiH genes encode stereo-specific 7alpha/7beta-hydroxy-3-oxo-delta4-cholenoic acid oxidoreductases. Biochim Biophys Acta. 2008;1781(1-2):16–25. doi:10.1016/j.bbalip.2007.10.008. PMID:18047844.
  • Dawson JA, Mallonee DH, Björkhem I, Hylemon PB. Expression and characterization of a C24 bile acid 7alpha-dehydratase from Eubacterium sp. strain VPI 12708 in Escherichia coli. J Lipid Res. 1996;37(6):1258–67. PMID:8808760.
  • Bhowmik S, Chiu HP, Jones DH, Chiu HJ, Miller MD, Xu Q, Farr CL, Ridlon JM, Wells JE, Elsliger MA, et al. Structure and functional characterization of a bile acid 7α dehydratase BaiE in secondary bile acid synthesis. Proteins. 2016;84(3):316–31. doi:10.1002/prot.24971. PMID:26650892.
  • Marschall HU, Oppermann UC, Svensson S, Nordling E, Persson B, Hoog JO, Jornvall H. Human liver class I alcohol dehydrogenase gamma isozyme: the sole cytosolic 3beta-hydroxysteroid dehydrogenase of iso bile acids. Hepatology. 2002;31:990–96. doi:10.1053/he.2000.5720.
  • Mallonee DH, White WB, Hylemon PB. Cloning and sequencing of a bile acid-inducible operon from Eubacterium sp. strain VPI 12708. J Bacteriol. 1990;172(12):7011–19. doi:10.1128/jb.172.12.7011-7019.1990. PMID:2254270.
  • Mallonee DH, Lijewski MA, Hylemon PB. Expression in Escherichia coli and characterization of a bile acid-inducible 3alpha-hydroxysteroid dehydrogenase from Eubacterium sp. strain VPI 12708. Curr Microbiol. 1995;30(5):259–63. doi:10.1007/BF00295498. PMID:7766153.
  • Bhowmik S, Jones DH, Chiu HP, Park IH, Chiu HJ, Axelrod HL, Farr CL, Tien HJ, Agarwalla S, Lesley SA. Structural and functional characterization of BaiA, an enzyme involved in secondary bile acid synthesis in human gut microbe. Proteins. 2014;82(2):216–29. doi:10.1002/prot.24353. PMID:23836456.
  • Hwang CC, Chang YH, Hsu CN, Hsu HH, Li CW, Pon HI. Mechanistic roles of Ser-114, Tyr-155, and Lys-159 in 3alpha-hydroxysteroid dehydrogenase/ carbonyl reductase from Comamonas testosteroni. J Biol Chem. 2005;280(5):3522–28. doi:10.1074/jbc.M411751200. PMID:15572373.
  • Bennett MJ, McKnight SL, Coleman JP. Cloning and characterization of the NAD-dependent 7alpha-Hydroxysteroid dehydrogenase from Bacteroides fragilis. Curr Microbiol. 2003;47(6):475–84. doi:10.1007/s00284-003-4079-4. PMID:14756531.
  • Tanaka N, Nonaka T, Tanabe T, Yoshimoto T, Tsuru D, Mitsui Y. Crystal structures of the binary and ternary complexes of 7alpha-hydroxysteroid dehydrogenase from Escherichia coli. Biochemistry. 1996;35(24):7715–30. doi:10.1021/bi951904d. PMID:8672472.
  • Baron SF, Franklund CV, Hylemon PB. Cloning, sequencing, and expression of the gene coding for bile acid 7 alpha-hydroxysteroid dehydrogenase from Eubacterium sp. strain VPI 12708. J Bacteriol. 1991;173(15):4558–69. doi:10.1128/jb.173.15.4558-4569.1991. PMID:1856160.
  • Ferrandi EE, Bertolesi GM, Polentini F, Negri A, Riva S, Monti D. In search of sustainable chemical processes: cloning, recombinant expression, and functional characterization of the 7α- and 7β-hydroxysteroid dehydrogenases from Clostridium absonum. Appl Microbiol Biotechnol. 2012;95(5):1221–33. doi:10.1007/s00253-011-3798-x. PMID:22198717.
  • Eggert T, Bakonyl D, Hummel W. Enzymatic routes for the synthesis of ursodeoxycholic acid. J Biotechnol. 2014;191:11–21. doi:10.1016/j.jbiotec.2014.08.006. PMID:25131646.
  • Edenharder R, Schneider J. 12β-dehydrogenation of bile acids by Clostridium paraputrificum, C. tertium, and C. difficile and epimerization at carbon-12 of deoxycholic acid by co-cultivation with 12α-dehydrogenating Eubacterium lentum. Appl Environ Microbiol. 1985;49(4):964–68. PMID:4004226.
  • MacDonald IA, Jellett JF, Mahony DE. 12alpha-hydroxysteroid dehydrogenase from Clostridium group P strain C48-50 ATCC No. 29733: partial purification and characterization. J Lipid Res. 1979;20(2):234–9. PMID:438663.
  • Aigner A, Gross R, Schmid R, Braun M, Mauer S. Novel 12alpha-hydroxysteroid dehydrogenases, production and use thereof. US Patent 20110091921A1. Filed Mar 25, 2009;Issued Apr. 21, 2011.
  • Wegner K, Just S, Gau L, Mueller H, Gérard P, Lepage P, Clavel T, Rohn S. Rapid analysis of bile acids in different biological matrices using LC-ESI-MS/MS for the investigation of bile acid transformation by mammalian gut bacteria. Anal Bioanal Chem. 2017;409(5):1231–45. doi:10.1007/s00216-016-0048-1. PMID:27822648.
  • Haiser HJ, Gootenberg DB, Chatman K, Sirasani G, Balskus EP, Turnbaugh PJ. Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science. 2013;341(6143):295–98. doi:10.1126/science.1235872. PMID:23869020.
  • Ottesen EA, Leadbetter JR. Diversity of formyltetrahydrofolate synthetases in the guts of the wood-feeding cockroach Cryptocercus punctulatus and the omnivorous cockroach Periplaneta americana. Appl Environ Microbiol. 2010;76(14):4909–13. doi:10.1128/AEM.00299-10. PMID:20495046.
  • Hädrich A, Heuer VB, Herrmann M, Hinrichs KU, Küsel K. Origin and fate of acetate in an acidic fen. FEMS Microbiol Ecol. 2012;81(2):339–54. doi:10.1111/j.1574-6941.2012.01352.x. PMID:22404042.
  • Müller V, Frerichs J. Acetogenic Bacteria. In: eLS. Chichester: John Wiley & Sons, Ltd, 2013.
  • Drake HL, Gössner AS, Daniel SL. Old acetogens, new light. Ann N Y Acad Sci. 2008;1125:100–28. doi:10.1196/annals.1419.016. PMID:18378590.
  • Ragsdale SW. Enzymology of the Wood-Ljungdahl pathway of acetogenesis. Ann NY Acad Sci. 2009;1125:129–36. doi:10.1196/annals.1419.015.
  • Tremblay PL, Zhang T, Dar SA, Leang C, Lovley DR. The Rnf complex of Clostridium ljungdahlii is a proton-translocating ferredoxin:NAD+ oxidoreductase essential for autotrophic growth. mBio. 2012;4(1):e00406–12. doi:10.1128/mBio.00406-12. PMID:23269825.
  • Buckel W, Thauer RK. Energy conservation via electron bifurcating ferredoxin reduction and proton/Na(+) translocating ferredoxin oxidation. Biochim Biophys Acta. 2013;1827(2):94–113. doi:10.1016/j.bbabio.2012.07.002. PMID:22800682.
  • Biegal E, Schmidt S, Gonzalez JM, Muller V. Biochemistry, evolution and physiological function of the Rnf complex, a novel ion-motive electron transport complex in prokaryotes. Cell Mol Life Sci. 2011;68:613–34. doi:10.1007/s00018-010-0555-8. PMID:21072677.
  • Greening C, Biswas A, Carere CR, Jackson CJ, Taylor MC, Stott MB, Cook GM, Morales SE. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J. 2016;10(3):761–77. doi:10.1038/ismej.2015.153. PMID:26405831.
  • Wolf PG, Biswas A, Morales SE, Greening C, Gaskins HR. H2 metabolism is widespread and diverse among human colonic microbes. Gut Microbes. 2016;7(3):235–45. doi:10.1080/19490976.2016.1182288. PMID:27123663.
  • Macdonald IA, Jellett JF, Mahony DE, Holdeman LV. Bile salt 3α- and 12α-hydroxysteroid dehydrogenases from Eubacterium lentum and related organisms. Appl Environ Microbiol. 1979;37:992–1000. PMID:39496.
  • Francis MB, Allen CA, Shrestha R, Sorg JA. Bile acid recognition by the Clostridium difficile germinant receptor, CspC, is important for establishing infection. PLoS Pathog. 2013;9(5):e1003356. doi:10.1371/journal.ppat.1003356. PMID:23675301.
  • Theriot CM, Young VB. Interactions between the gastrointestinal microbiome and Clostridium difficile. Annu Rev Microbiol. 2015;69:445–61. doi:10.1146/annurev-micro-091014-104115. PMID:26488281.
  • Masuda N, Oda H. 1983. 7α-Dehydroxylation of bile acids by resting cells of an unidentified, gram-positive, nonsporeforming anaerobic bacterium. Appl Environ Microbiol. 45(2):456–62. PMID:6572491.
  • Makishima M, Lu TT, Xie W, Whitfield GK, Domoto H, Evans RM, Haussler MR, Mangelsdorf DJ. Vitamin D receptor as an intestinal bile acid sensor. Science. 2002;296(5571):1313–16. doi:10.1126/science.1070477. PMID:12016314.
  • Lee JY, Arai H, Nakamura Y, Fukiya S, Wada M, Yokota A. Contribution of the 7beta-hydroxysteroid dehydrogenase from Ruminococcus gnavus N53 to ursodeoxycholic acid formation in the human colon. J Lipid Res. 2013;54(11):3062–69. doi:10.1194/jlr.M039834. PMID:23729502.
  • Odermatt A, Da Cunha T, Penno CA, Chandsawangbhuwana C, Reichert C, Wolf A, Dong M, Baker ME. Hepatic reduction of the secondary bile acid 7-oxolithocholic acid is mediated by 11beta-hydroxysteroid dehydrogenase 1. Biochem J. 2011;436(3):621–29. doi:10.1042/BJ20110022. PMID:21453287.
  • Odermatt A, Klusonova P. 11beta-Hydroxysteroid dehydrogenase 1: Regeneration of active glucocorticoids is only part of the story. J Steroid Biochem Mol Biol. 2015;151:85–92. doi:10.1016/j.jsbmb.2014.08.011. PMID:25151952.
  • Wang H, Chen J, Hollister K, Sowers LC, Forman BM. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol Cell. 1999;3(5):543–53. doi:10.1016/S1097-2765(00)80348-2. PMID:10360171.
  • Duboc H, Tachè Y, Hofmann AF. The bile acid TGR5 membrane receptor: from basic research to clinical application. Dig Liver Dis. 2014;46(4):302–12. doi:10.1016/j.dld.2013.10.021. PMID:24411485.
  • Holdeman LV, Chen J. Anaerobe Laboratory Manual, 4th ed. Blacksburg, VA: Virginia Polytechnic and State Institute. 1977.
  • Carbonero F, Benefiel AC, Gaskins HR. Contributions of the microbial hydrogen economy to colonic homeostasis. Nat Rev Gastroenterol Hepatol. 2012;9(9):504–18. doi:10.1038/nrgastro.2012.85. PMID:22585131.
  • Loman NJ, Quinlan AR. Poretools: a toolkit for analyzing nanopore sequence data. Bioinformatics. 2014;30(23):3399–401. doi:10.1093/bioinformatics/btu555. PMID:25143291.
  • Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455–77. doi:10.1089/cmb.2012.0021. PMID:22506599.
  • Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL. Versatile and open software for comparing large genomes. Genome Biol. 2004;5(2):R12. doi:10.1186/gb-2004-5-2-r12. PMID:14759262.
  • Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30(14):2068–69. doi:10.1093/bioinformatics/btu153. PMID:24642063.
  • Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428(4):726–31. doi:10.1016/j.jmb.2015.11.006. PMID:26585406.
  • Devendran S, Méndez-García C, Ridlon JM. Identification and characterization of a 20β-HSDH from the anaerobic gut bacterium Butyricicoccus desmolans ATCC 43058. J Lipid Res. 2017;58(5):916–25. doi:10.1194/jlr.M074914. PMID:28314858.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.