1,285
Views
6
CrossRef citations to date
0
Altmetric
Addendum

Silence is golden: gene silencing of V. cholerae during intestinal colonization delivers new aspects to the acid tolerance response

, & ORCID Icon
Pages 228-234 | Received 30 Apr 2018, Accepted 09 Jul 2018, Published online: 15 Aug 2018

References

  • Clemens JD, Nair GB, Ahmed T, Qadri F, Holmgren J. Cholera Lancet. 2017;390:1539–1549. doi:10.1016/S0140-6736(17)30559-7.
  • Christian KA, Iuliano AD, Uyeki TM, Mintz ED, Nichol ST, Rollin P, Staples JE, Arthur RR. What we are watching-top global infectious disease threats, 2013–2016: an update from CDC’s global disease detection operations center. Health Secur. 2017;15:453–462.
  • World Health Organization. Diarrhoeal disease. 2018. [accessed 2018 Apr 30]. http://www.who.int/mediacentre/factsheets/fs330/en/
  • Reidl J, Klose KE. Vibrio cholerae and cholera: out of the water and into the host. FEMS Microbiol Rev. 2002;26:125–139.
  • Wibbenmeyer JA, Provenzano D, Landry CF, Klose KE, Delcour AH. Vibrio cholerae OmpU and OmpT porins are differentially affected by bile. Infect Immun. 2002;70:121–126.
  • Hsiao A, Liu Z, Joelsson A, Zhu J. Vibrio cholerae virulence regulator-coordinated evasion of host immunity. Proc Natl Acad Sci U S A . 2006;103:14542–14547.
  • Cakar F, Zingl FG, Moisi M, Reidl J, Schild S. In vivo repressed genes of vibrio cholerae reveal inverse requirements of an H(+)/Cl(-) transporter along the gastrointestinal passage. Proc Natl Acad Sci U S A. 2018;115:E2376–E85.
  • Schild S, Tamayo R, Nelson EJ, Qadri F, Calderwood SB, Camilli A. Genes induced late in infection increase fitness of vibrio cholerae after release into the environment. Cell Host Microbe. 2007;2:264–277.
  • Angelichio MJ, Merrell DS, Camilli A. Spatiotemporal analysis of acid adaptation-mediated vibrio cholerae hyperinfectivity. Infect Immun. 2004;72:2405–2407.
  • Angelichio MJ, Spector J, Waldor MK, Camilli A. Vibrio cholerae intestinal population dynamics in the suckling mouse model of infection. Infect Immun. 1999;67:3733–3739.
  • Camilli A, Beattie DT, Mekalanos JJ. Use of genetic recombination as a reporter of gene expression. Proc Natl Acad Sci U S A. 1994;91:2634–2638.
  • Osorio CG, Crawford JA, Michalski J, Martinez-Wilson H, Kaper JB, Camilli A. Second-generation recombination-based in vivo expression technology for large-scale screening for Vibrio cholerae genes induced during infection of the mouse small intestine. Infect Immun. 2005;73:972–980.
  • Mi H, Muruganujan A, Casagrande JT, Thomas PD. Large-scale gene function analysis with the PANTHER classification system. Nat Protoc. 2013;8:1551–1566.
  • Karatan E, Duncan TR, Watnick PI. NspS, a predicted polyamine sensor, mediates activation of vibrio cholerae biofilm formation by norspermidine. J Bacteriol. 2005;187:7434–7443.
  • Bomchil N, Watnick P, Kolter R. Identification and characterization of a vibrio cholerae gene, mbaA, involved in maintenance of biofilm architecture. J Bacteriol. 2003;185:1384–1390.
  • Sobe RC, Bond WG, Wotanis CK, Zayner JP, Burriss MA, Fernandez N, Bruger EL, Waters CM, Neufeld HS, Karatan E. Spermine inhibits vibrio cholerae biofilm formation through the NspS-MbaA polyamine signaling system. J Biol Chem. 2017;292:17025–17036.
  • Cockerell SR, Rutkovsky AC, Zayner JP, Cooper RE, Porter LR, Pendergraft SS, Parker ZM, McGinnis MW, Karatan E. Vibrio cholerae NspS, a homologue of ABC-type periplasmic solute binding proteins, facilitates transduction of polyamine signals independent of their transport. Microbiology. 2014;160:832–843.
  • Beyhan S, Tischler AD, Camilli A, Yildiz FH. Differences in gene expression between the classical and El Tor biotypes of vibrio cholerae O1. Infect Immun. 2006;74:3633–3642.
  • Tischler AD, Camilli A. Cyclic diguanylate (c-di-GMP) regulates vibrio cholerae biofilm formation. Mol Microbiol. 2004;53:857–869.
  • Krasteva PV, Fong JC, Shikuma NJ, Beyhan S, Navarro MV, Yildiz FH, Sondermann H. Vibrio cholerae VpsT regulates matrix production and motility by directly sensing cyclic di-GMP. Science. 2010;327:866–868.
  • Tamayo R, Pratt JT, Camilli A. Roles of cyclic diguanylate in the regulation of bacterial pathogenesis. Annu Rev Microbiol. 2007;61:131–148.
  • Tischler AD, Camilli A. Cyclic diguanylate regulates vibrio cholerae virulence gene expression. Infect Immun. 2005;73:5873–5882.
  • Prouty MG, Correa NE, Klose KE. The novel sigma54- and sigma28-dependent flagellar gene transcription hierarchy of vibrio cholerae. Mol Microbiol. 2001;39:1595–1609.
  • Freter R, Jones GW. Adhesive properties of vibrio cholerae: nature of the interaction with intact mucosal surfaces. Infect Immun. 1976;14:246–256.
  • Leitner DR, Feichter S, Schild-Prufert K, Rechberger GN, Reidl J, Schild S. Lipopolysaccharide modifications of a cholera vaccine candidate based on outer membrane vesicles reduce endotoxicity and reveal the major protective antigen. Infect Immun. 2013;81:2379–2393.
  • Correa NE, Barker JR, Klose KE. The Vibrio cholerae FlgM homologue is an anti-sigma28 factor that is secreted through the sheathed polar flagellum. J Bacteriol. 2004;186:4613–4619.
  • Liu Z, Miyashiro T, Tsou A, Hsiao A, Goulian M, Zhu J. Mucosal penetration primes vibrio cholerae for host colonization by repressing quorum sensing. Proc Natl Acad Sci U S A. 2008;105:9769–9774.
  • Syed KA, Beyhan S, Correa N, Queen J, Liu J, Peng F, Satchell KJ, Yildiz F, Klose KE. The vibrio cholerae flagellar regulatory hierarchy controls expression of virulence factors. J Bacteriol. 2009;191:6555–6570.
  • Pressler K, Vorkapic D, Lichtenegger S, Malli G, Barilich BP, Cakar F, Zingl FG, Reidl J, Schild S. AAA+ proteases and their role in distinct stages along the vibrio cholerae lifecycle. Int J Med Microbiol. 2016;306:452–462.
  • Nielsen AT, Dolganov NA, Rasmussen T, Otto G, Miller MC, Felt SA, Torreilles S, Schoolnik GK. A bistable switch and anatomical site control vibrio cholerae virulence gene expression in the intestine. PLoS Pathog. 2010;6:e1001102.
  • Nielsen AT, Dolganov NA, Otto G, Miller MC, Wu CY, Schoolnik GK. RpoS controls the vibrio cholerae mucosal escape response. PLoS Pathog. 2006;2:e109.
  • Iyer R, Iverson TM, Accardi A, Miller C. A biological role for prokaryotic ClC chloride channels. Nature. 2002;419:715–718.
  • Merrell DS, Camilli A. The cadA gene of vibrio cholerae is induced during infection and plays a role in acid tolerance. Mol Microbiol. 1999;34:836–849.
  • Merrell DS, Camilli A. Regulation of vibrio cholerae genes required for acid tolerance by a member of the “ToxR-like” family of transcriptional regulators. J Bacteriol. 2000;182:5342–5350.
  • Foster JW. Escherichia coli acid resistance: tales of an amateur acidophile. Nat Rev Microbiol. 2004;2:898–907.
  • Merrell DS, Camilli A. Acid tolerance of gastrointestinal pathogens. Curr Opin Microbiol. 2002;5:51–55.
  • Lund P, Tramonti A, De Biase D. Coping with low pH: molecular strategies in neutralophilic bacteria. FEMS Microbiol Rev. 2014;38:1091–1125.
  • Shen A, Higgins DE. The MogR transcriptional repressor regulates nonhierarchal expression of flagellar motility genes and virulence in listeria monocytogenes. PLoS Pathog. 2006;2:e30.
  • Cummings LA, Wilkerson WD, Bergsbaken T, Cookson BT. In vivo, fliC expression by salmonella enterica serovar typhimurium is heterogeneous, regulated by ClpX, and anatomically restricted. Mol Microbiol. 2006;61:795–809.
  • Seper A, Pressler K, Kariisa A, Haid AG, Roier S, Leitner DR, Reidl J, Tamayo R, Schild S. Identification of genes induced in vibrio cholerae in a dynamic biofilm system. Int J Med Microbiol. 2014;304:749–763.
  • Seper A, Fengler VH, Roier S, Wolinski H, Kohlwein SD, Bishop AL, Camilli A, Reidl J, Schild S. Extracellular nucleases and extracellular DNA play important roles in vibrio cholerae biofilm formation. Mol Microbiol. 2011;82:1015–1037.