21,946
Views
153
CrossRef citations to date
0
Altmetric
Review

The rumen microbiome: a crucial consideration when optimising milk and meat production and nitrogen utilisation efficiency

, , ORCID Icon, , ORCID Icon &
Pages 115-132 | Received 05 Mar 2018, Accepted 26 Jun 2018, Published online: 12 Sep 2018

References

  • International Farm Comparison Network. Long-term dairy outlook. IFCN - the dairy research network. 2016.
  • Agriculture and Horticulture Development Board. Dairy Statistics - An insider’s guide 2015 [Internet]. 2015. http://www.dairyco.org.uk/non_umbraco/download.aspx?media=1438.
  • OECD-FAO. OECD - FAO agricultural outlook 2016-2025. 2016.
  • Lagrange V, Whitsett D, Burris C. Global market for dairy proteins. J Food Sci. 2015;80(S1). DOI:10.1111/1750-3841.12801
  • Pickering NK, Oddy VH, Basarab J, Cammack K, Hayes B, Hegarty RS, Lassen J, McEwan JC, Miller S, Pinares-Patiño CS, et al. Genetic possibilities to reduce enteric methane emissions from ruminants. Animal. 2015;9(9):1431–1440. doi:10.1017/S1751731114003280.
  • Rojas-Downing MM, Nejadhashemi AP, Harrigan T, Woznicki SA. Climate change and livestock: impacts, adaptation, and mitigation. Clim Risk Manag [Internet]. 2017;16:145–163.
  • Krehbiel CR. Invited Review: applied nutrition of ruminants: fermentation and digestive physiology. Prof Anim Sci [Internet]. 2014;30(2):129–139.
  • Morgavi DP, Forano E, Martin C, Newbold CJ. Microbial ecosystem and methanogenesis in ruminants. Animal. 2012;6(5):871.
  • Brulc JM, Antonopoulos DA, Miller MEB, Wilson MK, Yannarell AC, Dinsdale EA, Edwards RE, Frank ED, Emerson JB, Wacklin P, et al. Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proc Natl Acad Sci USA. 2009;106(6):1948–1953.
  • Mccann JC, Wickersham TA, Loor JJ. High-throughput methods redefine the rumen microbiome and its relationship with nutrition and metabolism. Bioinform Biol Insights. 2014;109–125.
  • Ishler V, Heinrichs J, Varga G. From feed to milk : understanding rumen function. 1996.
  • Byrant MP. Normal Flora - Rumen Bacteria. Am J Clin Nutr. 1970;23(11):1440–1450.
  • Gordon GL, Phillips MW The role of anaerobic gut fungi in ruminants. Nutr Res Rev [Internet]. 1998;11(1):133–168. http://www.ncbi.nlm.nih.gov/pubmed/19087463.
  • Husvéth F. Physiological and reproductional aspects of animal production. 2011.
  • Depeters EJ, George LW. Rumen transfaunation. Immunol Lett [Internet]. 2014;162(2):69–76.
  • McSweeney CS, Mackie R. Micro-organisms and ruminant digestion: state of knowledge, trends and future prospects. 2012.
  • Castillo-Gonzalez AR, Burrola-Barraza ME, Dominguez-Viveros J, Chavez-Martinez A. Rumen microorganisms and fermentation Microorganismos y fermentación ruminal. Arch Med Vet. 2014;46:349–361.
  • Hungate RE. The Rumen and its Microbes. New York: Academic Press; 1966.
  • Oetzel GR. Introduction to Ruminal Acidosis in Dairy Cattle. Technology. 2003;15:307–317.
  • Chaucheyras-Durand F, Ossa F. Review: the rumen microbiome: composition, abundance, diversity, and new investigative tools. Prof Anim Sci [Internet]. 2014;30(1):1–12.
  • Krause DO, Nagaraja TG, Wright ADG, Callaway TR. Board-invited review: rumen microbiology: leading the way in microbial ecology. J Anim Sci. 2013;91(1):331–341.
  • Henderson G, Cox F, Ganesh S, Jonker A, Young W, Janssen PH. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci Rep [Internet]. 2015;5(April):14567. http://www.scopus.com/inward/record.url?eid=2-s2.0-84943655505&partnerID=tZOtx3y1.
  • Koike S, Kobayashi Y. Fibrolytic rumen bacteria: their ecology and functions. Asian-Australasian J Anim Sci. 2009;22(1):131–138.
  • Ratti RP, Botta LS, Sakamoto IK, Silva EL, Varesche MBA. Production of H2 from cellulose by rumen microorganisms: effects of inocula pre-treatment and enzymatic hydrolysis. Biotechnol Lett. 2014;36(3):537–546.
  • Fernando SC, Ii HTP, Najar FZ, Sukharnikov LO, Krehbiel CR, Nagaraja TG, Roe BA, Desilva U. Rumen microbial population dynamics during adaptation to a high-grain diet. 2010;76(22):7482–7490.
  • Chen Y, Oba M, Guan LL. Variation of bacterial communities and expression of Toll-like receptor genes in the rumen of steers differing in susceptibility to subacute ruminal acidosis. Vet Microbiol [Internet]. 2012;159(3–4):451–459.
  • Duskova D, Marounek M. Fermentation of pectin and glucose and activity of pectin-degrading enzymes in the rumen bacterium Lachnospira multiparus. Lett Appl Microbiol. 2001;33:159–163.
  • Santos GT, Lima LS, Schogor ALB, Romero JV, De Marchi FE, Grande PA, Santos NW, Santos FS, Kazama R. Citrus pulp as a dietary source of antioxidants for lactating holstein cows fed highly polyunsaturated fatty acid diets. Asian-Australasian J Anim Sci. 2014;27(8):1104–1113.
  • Santos F, Menezes Junior M, Simas J, Pires A, Nussio C. Corn grain processing and its partial replacement by pelleted citrus pulp on performance, nutrient digestibility and blood parameters of dairy cows. Asian-Australasian J Anim Sci. 2001;23:923–931.
  • Jami E, White BA, Mizrahi I. Potential role of the bovine rumen microbiome in modulating milk composition and feed efficiency. PLoS One. 2014;9:1.
  • Bainbridge ML, Cersosimo LM, Wright ADG, Kraft J. Rumen bacterial communities shift across a lactation in Holstein, Jersey and Holstein × Jersey dairy cows and correlate to rumen function, bacterial fatty acid composition and production parameters. FEMS Microbiol Ecol. 2016;92(5):1–14.
  • Hook SE, Wright A-DG, McBride BW. Methanogens: methane producers of the rumen and mitigation strategies. Archaea [Internet]. 2010;2010:1–11.
  • Lin C, Raskin L, Stahl DA. Microbial community structure in gastrointestinal tracts of domestic animals: comparetive analyses using rRNA-targeted oligonucleotide probes. FEMS Microbiol Ecol. 1997;22(28):281–294.
  • Jarrell KF, Bayley DP, Correia JD, Thomas NA. Recent about Excitement the Archaea The Archaea are valuable for studying basic biological questions and have novel biotechnology applications. Sci York. 2009;49(7):530–541.
  • Sirohi SK, Pandey N, Singh B, Puniya AK. Rumen methanogens: A review. Indian J Microbiol. 2010;50(3):253–262.
  • Janssen PH, Kirs M. Structure of the Archaeal Community of the Rumen. Appl Environ Microbiol. 2008;74(12):3619–3625.
  • Patra A, Park T, Kim M, Yu Z. Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. J Anim Sci Biotechnol [Internet]. 2017;8(1):13.
  • Leahy SC, Kelly WJ, Ronimus RS, Wedlock N, Altermann E, Attwood GT. Genome sequencing of rumen bacteria and archaea and its application to methane mitigation strategies. Animal. 2013;7(s2):235–243.
  • Goopy JP, Donaldson A, Hegarty R, Vercoe PE, Haynes F, Barnett M, Moughan PJ. Low-methane yield sheep have smaller rumens and shorter rumen retention time. Br J Nutr. 2014;111(4):578–585.
  • Beauchemin K, McAllister TA, McGinn SM. Dietary mitigation of enteric methane from cattle. CAB Rev Perspect Agric Vet Sci Nutr Nat Resour [Internet]. 2009;4(35):1–18.
  • Johnson KA, Johnson DE. Methane emissions from cattle. J Anim Sci. 1995;(8):2483–2492.
  • Wallace RJ, Rooke JA, Duthie CA, Hyslop JJ, Ross DW, McKain N, De Souza SM, Snelling TJ, Waterhouse A, Roehe R Archaeal abundance in post-mortem ruminal digesta may help predict methane emissions from beef cattle. Sci Reports [Internet]. 2014;4(2):5892. http://www.ncbi.nlm.nih.gov/pubmed/25081098.
  • Denman SE, Tomkins NW, McSweeney CS. Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane. FEMS Microbiol Ecol. 2007;62(3):313–322.
  • Kinley RD, De NR, Vucko MJ, Machado L, Tomkins NW. The red macroalgae Asparagopsis taxiformis is a potent natural antimethanogenic that reduces methane production during in vitro fermentation with rumen fluid. Anim Prod Sci. 2016;56:282–289. DOI:10.1071/AN15576
  • Tymensen LD, Beauchemin KA, McAllister TA. Structures of free-living and protozoa-associated methanogen communities in the bovine rumen differ according to comparative analysis of 16S rRNA and mcrA genes. Microbiology [Internet]. 2012;158(7):1808–1817. http://www.ncbi.nlm.nih.gov/pubmed/22539164.
  • Jouany J. Rumen microbial metabolism and ruminant digestion. 1991;240.
  • Newbold CJ, De La Fuente G, Belanche A, Ramos-Morales E, McEwan NR. The role of ciliate protozoa in the rumen. Front Microbiol. 2015;6(NOV):1–14.
  • Finlay BJ, Esteban G, Clarke KJ, Williams AG, Embley TM, Hirt RP. Some rumen ciliates have endosymbiotic methanogens. FEMS Microbiol Lett. 1994;117(2):157–161.
  • McSweeney CS, Denman SE, Wright ADG, Yu Z. Application of recent DNA/RNA-based techniques in rumen ecology. Asian-Australasian J Anim Sci. 2007;20(2):283–294.
  • Bach A, Calsamiglia S, Stern MD. Nitrogen metabolism in the Rumen. J Dairy Sci [Internet]. 2005;88:E9–21.
  • Indikova I, Humphrey TJ, Hilbert F. Survival with a helping hand: campylobacter and microbiota. Front Microbiol. 2015;6(NOV):1–6.
  • Kelly WJ, Leahy SC, Li D, Reilly K, Lambie SC, McAllister TA, Valle ER, Attwood GT, Altermann E The complete genome sequence of the rumen methanogen Methanosarcina barkeri CM1. Stand Genomic Sci [Internet]. 2015;10(1):57. http://www.ncbi.nlm.nih.gov/pubmed/26413197.
  • Olofsson J, Axelsson-Olsson D, Brudin L, Olsen B, Ellström P. Campylobacter jejuni actively invades the amoeba Acanthamoeba polyphaga and survives within non digestive vacuoles. PLoS One. 2013;8:11.
  • Sahin O, Fitzgerald C, Stroika S, Zhao S, Sippy RJ, Kwan P, Plummer PJ, Han J, Yaeger MJ, Zhang Q. Molecular evidence for zoonotic transmission of an emergent, highly pathogenic Campylobacter jejuni clone in the United States. J Clin Microbiol. 2012;50(3):680–687.
  • Dagar SS, Kumar S, Griffith GW, Edwards JE, Callaghan TM, Singh R, Nagpal AK, Puniya AK. A new anaerobic fungus (Oontomyces anksri gen. nov., sp. nov.) from the digestive tract of the Indian camel (Camelus dromedarius). Fungal Biol [Internet]. 2015;119(8):731–737.
  • Callaghan TM, Podmirseg SM, Hohlweck D, Edwards JE, Puniya AK, Dagar SS, Griffith GW. Buwchfawromyces eastonii gen. nov., sp. nov.: a new anaerobic fungus (Neocallimastigomycota) isolated from buffalo faeces. MycoKeys [Internet]. 2015;9(34):11–28. http://mycokeys.pensoft.net/articles.php?id=4799.
  • Garcia-Vallve S, Romeu A, Palau J. Horizontal gene transfer of glycosyl hydrolases of the rumen fungi. Mol Biol Evol [Internet]. 2000;17(3):352–361.
  • Akin DE, Borneman WS. Role of rumen fungi in fiber degradation. J Dairy Sci [Internet]. 1990;114(10):3023–3032.
  • Kittelmann S, Naylor GE, Koolaard JP, Janssen PH. A proposed taxonomy of anaerobic fungi (class neocallimastigomycetes) suitable for large-scale sequence-based community structure analysis. PLoS One. 2012;7(5):1–13.
  • Fliegerová K, Mrázek J, Hoffmann K, Zábranská J, Voigt K. Diversity of anaerobic fungi within cow manure determined by ITS1 analysis. Folia Microbiol (Praha). 2010;55(4):319–325.
  • Klieve AVA, Swain RAB, Nolan JVB. Bacteriophages in the Rumen; types present, population size and implications for the efficiency of feed utilisation. Popul (English Ed. 1996;2(2):92–94.
  • Ross EM, Petrovski S, Moate PJ, Hayes BJ. Metagenomics of rumen bacteriophage from thirteen lactating dairy cattle. BMC Microbiol [Internet]. 2013;13(1):242.
  • Berg Miller ME, Yeoman CJ, Chia N, Tringe SG, Angly FE, Edwards RA, Flint HJ, Lamed R, Bayer EA, White BA. Phage-bacteria relationships and CRISPR elements revealed by a metagenomic survey of the rumen microbiome. Environ Microbiol. 2012;14(1):207–227.
  • Ricard G, McEwan NR, Dutilh BE, Jouany J-PP, Macheboeuf D, Mitsumori M, et al Horizontal gene transfer from Bacteria to rumen Ciliates indicates adaptation to their anaerobic, carbohydrates-rich environment. BMC Genomics [Internet]. 2006;7:22. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16472398.
  • Rufener WH, Nelson W, Wolin MJ. Maintenance of the rumen microbial population in continuous culture. Appl Microbiol. 1962;11(May).
  • Fessenden SW. Amino acid supply in lactating dairy cattle. Cornell University; 2016.
  • Creevey CJ, Kelly WJ, Henderson G, Leahy SC. Determining the culturability of the rumen bacterial microbiome. Microb Biotechnol [Internet]. 2014;7(5):467–479.
  • McCabe MS, Cormican P, Keogh K, O’ Connor A, Eoin OH, Pallandino RA, Kenny DA, Waters SM. Illumina MiSeq phylogenetic amplicon sequencing shows a large reduction of an uncharacterised succinivibrionaceae and an increase of the methanobrevibacter gottschalkii clade in feed restricted cattle. PLoS One [Internet]. 2015;10(7). http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0133234.
  • Luton PE, Wayne JM, Sharp RJ, Riley PW. The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology. 2016;2002:3521–3530.
  • Reuter JA, Spacek D, Snyder MP. High-Throughput Sequencing Technologies. Mol Cell. 2015;58(4):586–597.
  • Kunin V, Copeland A, Lapidus A, Mavromatis K, Hugenholtz P. A bioinformatician’s guide to metagenomics. Microbiol Mol Biol Rev [Internet]. 2008;72(4):557–578. Table of Contents. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2593568&tool=pmcentrez&rendertype=abstract.
  • Wood DE, Salzberg SL. Kraken : ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 2014;15:R46.
  • Silva GGZ, Green KT, Dutilh BE, Edwards RA. Sequence analysis SUPER-FOCUS : a tool for agile functional analysis of shotgun metagenomic data. Bioinformatics. 2016;32(October 2015):354–361.
  • Beever DE, Doyle PT. Feed conversion efficiency as a key determinant of dairy herd performance :a review. Aust J Exp Agric. 2007;47:645–657.
  • Carberry CA, Waters SM, Waters SM, Kenny DA, Creevey CJ. Rumen methanogenic genotypes differ in abundance according to host residual feed intake phenotype and diet type. Appl Environ Microbiol [Internet]. 2014;80(2):586–594.
  • Nkrumah JD, Okine EK, Mathison GW, Schmid K, Li C, Basarab JA, Price MA, Wang Z, Moore SS. Relationships of feedlot feed efficiency, performance, and feeding behavior with metabolic rate, methane production, and energy partitioning in beef cattle. J Anim Sci. 2006;84:145–153.
  • Maulfair D, Heinrichs J, Ishler V. Feed efficiency for lactating dairy cows and its relationship to income over feed costs. 2011;DAS 11-183:1–6. College of Agricultural Sciences.
  • Heinrichs J, Suarez J, Jones C. Feed efficiency in dairy heifers [Internet]. 2011. http://extension.psu.edu/animals/dairy/nutrition/heifers/heifer-feeding-and-management/feed-efficiency-in-dairy-heifers/extension_publication_file.
  • Guan L, Li F, Bulumulla A, Zhou M. The role of rumen microbiome on feed efficiency of grazing cattle. Dep Agric Food Nutr Sci Univ Alberta [Internet]. 2014;137–147. http://dairy.ifas.ufl.edu/rns/2017/Guan.pdf.
  • Li F, Guan LL. Metatranscriptomic profiling reveals linkages between the active rumen microbiome and feed efficiency in beef cattle. Appl Environ Microbiol. 2017;83(9):1–16.
  • Engelking LR. Chapter 37 – gluconeogenesis. In: Textbook of Veterinary Physiological Chemistry. 2015. p. 225–230. ISBN: 9780123919106
  • Lovett DK, Shalloo L, Dillon P, Mara FPOÕ. A systems approach to quantify greenhouse gas fluxes from pastoral dairy production as affected by management regime. Agric Syst. 2006;88:156–179.
  • Hurley AM, López-Villalobos N, McParland S, Kennedy E, Lewis E, O’Donovan M, Burke JL, Berry DP. Inter-relationships among alternative definitions of feed efficiency in grazing lactating dairy cows. J Dairy Sci [Internet]. 2016;99(1):468–479. http://www.sciencedirect.com/science/article/pii/S0022030215008255.
  • Martinez-Fernandez G, Denman SE, Yang C, Cheung J, Mitsumori M, McSweeney CS. Methane inhibition alters the microbial community, hydrogen flow, and fermentation response in the rumen of cattle. Front Microbiol [Internet]. 2016;7(July):1–14.
  • Liu C, Li XH, Chen YX, Cheng ZH, Duan QH, Meng QH, Tao XP, Shang B, Dong HM. Age-related response of rumen microbiota to mineral salt and effects of their interactions on enteric methane emissions in cattle. Microb Ecol. 2017;(3):590–601.
  • Niu D, Zuo S, Jiang D, Tian P, Zheng M, Xu C. Treatment using white rot fungi changed the chemical composition of wheat straw and enhanced digestion by rumen microbiota in vitro. Anim Feed Sci Technol [Internet]. 2018;237(July 2017):46–54.
  • Vyas D, Alemu AW, McGinn SM, Duval SM, Kindermann M, Beauchemin KA. The combined effects of supplementing monensin and 3-nitrooxypropanol on methane emissions, growth rate, and feed conversion efficiency in beef cattle fed high forage and high grain diets. J Anim Sci. 2018;96(7):2923–2938.
  • Bielecka M. Probiotics in Food. FAO/WHO [Internet]. 2006;413–426. http://www.crcnetbase.com/doi/abs/10.1201/9781420009613.ch16.
  • Deng KD, Xiao Y, Ma T, Tu Y, Diao QY, Chen YH, Jiang JJ. Ruminal fermentation, nutrient metabolism, and methane emissions of sheep in response to dietary supplementation with Bacillus licheniformis. Anim Feed Sci Technol. 2018;241(November 2017):38–44.
  • Chee-Sanford JC, Krapac IJ, Yannarell AC, Mackie RI. Environmental Impacts of Antibiotic Use in the Animal Production Industry. Ecol Anim Heal Ecosyst Heal Sustain Agric. 2012;2:228–368.
  • Thanner S, Drissner D, Walsh F. Antimicrobial resistance in Agriculture. MBio. 2016;7(2):67–75.
  • Auffret MD, Dewhurst RJ, Duthie C-A, Rooke JA, John Wallace R, Freeman TC, Stewart R, Watson M, Roehe R. The rumen microbiome as a reservoir of antimicrobial resistance and pathogenicity genes is directly affected by diet in beef cattle. Microbiome [Internet]. 2017;5(1):159. https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-017-0378-z.
  • Maier L, Pruteanu M, Kuhn M, Zeller G, Telzerow A, Anderson EE, Brochado AR, Fernandez KC, Dose H, Mori H, et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature [Internet]. 2018;555(7698):623–628.
  • Carberry CA, Kenny DA, Kelly AK, Waters SM. Quantitative analysis of ruminal methanogenic microbial populations in beef cattle divergent in phenotypic residual feed intake (RFI) offered contrasting diets. J Anim Sci Biotechnol [Internet]. 2014;5(1):41.
  • Fouts DE, Szpakowski S, Purushe J, Torralba M, Waterman RC, MacNeil MD, Alexander LJ, Nelson KE. Next generation sequencing to define prokaryotic and fungal diversity in the bovine rumen. PLoS One. 2012;7(11) :e48289. doi:10.1371/journal.pone.0048289.
  • Morgavi DP, Rathahao-Paris E, Popova M, Boccard J, Nielsen KF, Boudra H. Rumen microbial communities influence metabolic phenotypes in lambs. Front Microbiol. 2015;6(OCT):1–13.
  • Droge J, Mchardy AC. Taxonomic binning of metagenome samples generated by next-generation sequencing technologies. Brief Bioinform. 2012;13(6):646–655.
  • Hess M. Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science (80-) [Internet]. 2011;463(6016):463–467.
  • Svartström O, Alneberg J, Terrapon N, Lombard V, De Bruijn I, Malmsten J, Dalin AM, El Muller E, Shah P, Wilmes P, et al. Ninety-nine de novo assembled genomes from the moose (Alces alces) rumen microbiome provide new insights into microbial plant biomass degradation. ISME J. 2017;11(11):2538–2551.
  • Stewart RD, Auffret MD, Warr A, Wiser AH, Press MO, Langford KW, Liachko I, Snelling TJ, Dewhurst RJ, Walker AW, et al. Assembly of 913 microbial genomes from metagenomic sequencing of the cow rumen. Nat Commun [Internet]. 2018;9(1):1–11.
  • Cao MD, Nguyen SH, Ganesamoorthy D, Elliott AG, Cooper MA, Coin LJM. Scaffolding and completing genome assemblies in real-time with nanopore sequencing. Nat Commun [Internet]. 2017;8:1–10.
  • Miller JR, Zhou P, Mudge J, Gurtowski J, Lee H, Ramaraj T, Walenz BP, Liu J, Stupar RM, Denny R, Song L. Hybrid assembly with long and short reads improves discovery of gene family expansions. BMC Genomics. 2017;18(1):1–12. doi:10.1186/s12864-016-3396-5.
  • Hino T, Asanuma N. Suppression of ruminal methanogenesis by decreasing the substrates available to methanogenic bacteria. Nutr Abstr Rev. 2003;1R–8R. (Series B: Livestock Feeds and Feeding).
  • Lopes J, De Matos L, Harper M, Giallongo F, Oh J, Gruen D, Ono S, Kindermann M, Duval S, Hristov AN. Effect of 3-nitrooxypropanol on methane and hydrogen emissions, methane isotopic signature, and ruminal fermentation in dairy cows. J Dairy Sci. 2016;99:5335–5344. DOI:10.3168/jds.2015-10832
  • Hristov AN, Oh J, Giallongo F, Frederick TW, Harper MT, Weeks HL, Branco AF, Moate PJ, Deighton MH, Williams SR, et al An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production. Proc Natl Acad Sci U S A. 2015;112(34):10663–10668.
  • Reid M, O’Donovan M, Elliott CT, Bailey JS, Watson CJ, Stj L, Corrigan B, Fenelon MA, Lewis E. The effect of dietary crude protein and phosphorus on grass-fed dairy cow production, nutrient status, and milk heat stability. J Dairy Sci [Internet]. 2015;98(1):517–531. http://www.ncbi.nlm.nih.gov/pubmed/25465549.
  • Tadele Y. Use of different non protein nitrogen sources in ruminant nutrition: a review. Adv Life Sci Technol. 2015;29:100–106.
  • Murphy SC, Martin NH, Barbano DM, Wiedmann M. Influence of raw milk quality on processed dairy products: how do raw milk quality test results relate to product quality and yield. J Dairy Sci. 2016;99:10128–10149. ISBN 1478611200
  • Campbell JR, Marshall RT. Dairy production and processing: the science of milk and milk products. 2016;105–109.
  • Castillo AR, Kebreab E, Beever DE, France J A review of efficiency of nitrogen utilisation in lactating dairy cows and its relationship with environmental pollution. J Anim Feed Sci [Internet]. 2000;9(1):1–32. http://www.scopus.com/inward/record.url?eid=2-s2.0-0034552301&partnerID=40&md5=fb9f0a85c7eaf652d6cca82cd991fecc.
  • Ipharraguerre IR, Clark JH. Impacts of the source and amount of crude protein on the intestinal supply of nitrogen fractions and performance of dairy cows. J Dairy Sci. 2005;88(Supplement):E22–37.
  • Hall MB, Huntington GB. Nutrient synchrony: sound in theory, elusive in practice. J Anim Sci. 2008;86(14 Suppl):287–292.
  • Broderick GA Effects of varying dietary protein and energy levels on the production of lactating dairy cows. J Dairy Sci [Internet]. 2003;86(4):1370–1381. http://www.ncbi.nlm.nih.gov/pubmed/12741562.