1,201
Views
4
CrossRef citations to date
0
Altmetric
Commentary and Views

Detection of mixed-strain infections by FACS and ultra-low input genome sequencing

ORCID Icon, , , &
Pages 305-309 | Received 18 Apr 2018, Accepted 11 Sep 2018, Published online: 05 Oct 2018

References

  • Eyre DW, Golubchik T, Gordon NC, Bowden R, Piazza P, Batty EM, Ip CL, Wilson DJ, Didelot X, O’Connor L, et al. A pilot study of rapid benchtop sequencing of Staphylococcus aureus and Clostridium difficile for outbreak detection and surveillance. BMJ Open. 2012;2(3):e001124+. doi:10.1136/bmjopen-2012-001124.
  • Didelot X, Eyre D, Cule M, Ip C, Ansari M, Griffiths D, Vaughan A, O’Connor L, Golubchik T, Batty EM, et al. Microevolutionary analysis of Clostridium difficile genomes to investigate transmission. Genome Biol. 2012;13(12):R118+. doi:10.1186/gb-2012-13-12-r118.
  • Gan M, Liu Q, Yang C, Gao Q, Luo T. Deep whole-genome sequencing to detect mixed infection of Mycobacterium tuberculosis. PLoS One. 2016;11(7):e0159029. doi:10.1016/B978-0-12-407863-5.00001-0.
  • van Den Berg RJ, Ameen HA, Furusawa T, Claas EC, van der Vorm ER, Kuijper EJ. Coexistence of multiple PCR-ribotype strains of Clostridium difficile in faecal samples limits epidemiological studies. J Med Microbiol. 2005;54(2):173–179. doi:10.1099/jmm.0.45825-0.
  • Eyre DW, Cule ML, Griffiths D, Crook DW, Peto TE, Walker A, Wilson DJ. Detection of mixed infection from bacterial whole genome sequence data allows assessment of its role in Clostridium difficile transmission. PLoS Comput Biol. 2013;9(5):e1003059+. doi:10.1371/journal.pcbi.1003059.
  • Tanner HE, Hardy KJ, Hawkey PM. Coexistence of multiple multilocus variable-number tandem-repeat analysis subtypes of Clostridium difficile PCR ribotype 027 strains within fecal specimens. J Clin Microbiol. 2010;48(3):985–987. doi:10.1128/JCM.02012-09.
  • Rupnik M, Wilcox MH, Gerding DN. Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nat Rev Microbiol. 2009;7(7):526–536. doi:10.1038/nrmicro2164.
  • Lawson PA, Citron DM, Tyrrell KL, Finegold SM. Reclassification of Clostridium difficile as Clostridioides difficile (Hall and O’Toole 1935) Prévot 1938. Anaerobe. 2016;40:95–99. doi:10.1016/j.anaerobe.2016.06.008.
  • Matsuda K, Tsuji H, Asahara A, Takahashi T, Kubota H, Nagata S, Yamashiro Y, Nomoto K. Sensitive quantification of Clostridium difficile cells by reverse transcription-quantitative PCR targeting rRNA molecules. Appl Environ Microbiol. 2012;78(15):5111–5118. doi:10.1128/AEM.07990-11.
  • Džunková M, Moya A, Vázquez-Castellanos JF, Artacho A, Chen X, Kelly C, D’Auria G. Active and secretory IgA-coated bacterial fractions elucidate dysbiosis in Clostridium difficile infection. mSphere. 2016;1(3):e00101–16. doi:10.1128/mSphere.00101-16.
  • Tschudin-Sutter S, Braissant O, Erb S, Stranden A, Bonkat G, Frei R, Widmer AF. Growth patterns of Clostridium difficile – correlations with strains, binary toxin and disease severity: a prospective cohort study. PLoS One. 2016;11(9):e0161711. doi:10.1371/journal.pone.0161711.
  • Yilmaz S, Haroon MF, Rabkin BA, Tyson GW, Hugenholtz P. Fixation-free fluorescence in situ hybridization for targeted enrichment of microbial populations. ISME J. 2010;4(10):1352–1356. doi:10.1038/ismej.2010.73.
  • Novakova J, Džunková M, Musilova S, Vlkova E, Kokoska L, Moya A, D’Auria G. Selective growth-inhibitory effect of 8-hydroxyquinoline towards Clostridium difficile and bifidobacterium longum subsp. longum in co-culture analyzed by flow cytometry. J Med Microbiol. 2014;63(12):1663–1669. doi:10.1099/jmm.0.080796-0.
  • Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9(4):357–359. doi:10.1038/nmeth.1923.
  • Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP. Integrative genomics viewer. Nat Biotechnol. 2011;29(1):24–26. doi:10.1038/nbt.1754.
  • Du P, Cao B, Wang J, Li W, Jia H, Zhang W, Lu J, Li Z, Yu H, Chen C, et al. Sequence variation in tcdA and tcdB of Clostridium difficile: ST37 with truncated tcdA is a potential epidemic strain in China. J Clin Microbiol. 2014;52(9):3264–3270. doi:10.1128/JCM.03487-13.
  • Raffetseder J, Pienaar E, Blomgran R, Eklund D, Patcha Brodin V, Andersson H, Welin A, Lerm M. Replication rates of Mycobacterium tuberculosis in human macrophages do not correlate with mycobacterial antibiotic susceptibility. PLoS One. 2014;9(11):e112426. doi:10.1371/journal.pone.0112426.
  • Li SS, Zhu A, Benes A, Costea PI, Hercog R, Hildebrand F, Huerta-Cepas J, Nieuwdorp M, Salojärvi J, Voigt AY, et al. Durable coexistence of donor and recipient strains after fecal microbiota transplantation. Science. 2016;352(6285):586–589. doi:10.1126/science.aad8852.
  • Rinke C, Low S, Woodcroft BJ, Raina JB, Skarshewski A, Le XH. Validation of picogram- and femtogram-input DNA libraries for microscale metagenomics. PeerJ. 2016;4:e2486. doi:10.7717/peerj.2486.
  • Danon L, Ford AP, House T, Jewell CP, Keeling MJ, Roberts GO, Ross JV, Vernon MC. Networks and the epidemiology of infectious disease. Interdiscip Perspect Infect Dis. 2011;2011:284909. doi:10.1155/2011/284909.
  • Rinke C, Lee J, Nath N, Goudeau D, Thompson B, Poulton N, Dmitrieff E, Malmstrom R, Stepanauskas R, Woyke T. Obtaining genomes from uncultivated environmental microorganisms using FACS–based single-cell genomics. Nat Protoc. 2014;9(5):1038–1048. doi:10.1038/nprot.2014.067.
  • Albertsen M, Hugenholtz P, Skarshewski A, Nielsen KL, Tyson GW, Nielsen PH. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat Biotechnol. 2013;31(6):533–538. doi:10.1038/nbt.2579.
  • Stepanauskas R, Fergusson EA, Brown J, Poulton NJ, Tupper B, Labonté JM, Becraft ED, Brown JM, Pachiadaki MG, Povilaitis T, et al. Improved genome recovery and integrated cell-size analyses of individual uncultured microbial cells and viral particles. Nat Comm. 2017;8(1):84. doi:10.1038/s41467-017-02128-5.
  • Ionescu D, Bizic-Ionescu M, De Maio N, Cypionka H, Grossart HP. Community-like genome in single cells of the sulfur bacterium Achromatium oxaliferum. Nat Comm. 2017;8(1):455. doi:10.1038/s41467-017-00342-9.