3,486
Views
12
CrossRef citations to date
0
Altmetric
Addendum

Serine-rich repeat proteins from gut microbes

ORCID Icon, , ORCID Icon &
Pages 102-117 | Received 04 Dec 2018, Accepted 27 Mar 2019, Published online: 29 Apr 2019

References

  • Lizcano A, Sanchez CJ, Orihuela CJ. A role for glycosylated serine-rich repeat proteins in Gram-positive bacterial pathogenesis. Mol Oral Microbiol. 2012;27:257–269. doi:10.1111/j.2041-1014.2012.00653.x.
  • Seo HS, Xiong YQ, Sullam PM. Role of the serine-rich surface glycoprotein Srr1 of Streptococcus agalactiae in the pathogenesis of infective endocarditis. PLoS One. 2013;8:e64204. doi:10.1371/journal.pone.0064204.
  • Wu H, Mintz KP, Ladha M, Fives-Taylor PM. Isolation and characterization of Fap1, a fimbriae-associated adhesin of Streptococcus parasanguis FW213. Mol Microbiol. 1998;28:487–500.
  • Zhou M, Wu H. Glycosylation and biogenesis of a family of serine-rich bacterial adhesins. Microbiol (Reading, Engl). 2009;155:317–327. doi:10.1099/mic.0.025221-0.
  • Bensing BA, Sullam PM. An accessory sec locus of Streptococcus gordonii is required for export of the surface protein GspB and for normal levels of binding to human platelets. Mol Microbiol. 2002;44:1081–1094.
  • Bensing BA, Gibson BW, Sullam PM. The Streptococcus gordonii platelet binding protein GspB undergoes glycosylation independently of export. J Bacteriol. 2004;186:638–645.
  • Chaze T, Guillot A, Valot B, Langella O, Chamot-Rooke J, Di Guilmi A-M, Trieu-Cuot P, Dramsi S, Mistou M-Y. O-Glycosylation of the N-terminal region of the serine-rich adhesin Srr1 of Streptococcus agalactiae explored by mass spectrometry. Mol Cell Proteomics. 2014;13:2168–2182. doi:10.1074/mcp.M114.038075.
  • Siboo IR, Chaffin DO, Rubens CE, Sullam PM. Characterization of the accessory Sec system of Staphylococcus aureus. J Bacteriol. 2008;190:6188–6196. doi:10.1128/JB.00300-08.
  • Takamatsu D, Bensing BA, Sullam PM. Genes in the accessory sec locus of Streptococcus gordonii have three functionally distinct effects on the expression of the platelet-binding protein GspB. Mol Microbiol. 2004;52:189–203. doi:10.1111/j.1365-2958.2004.03978.x.
  • Li Y, Huang X, Li J, Zeng J, Zhu F, Fan W, Hu L. Both GtfA and GtfB are required for SraP glycosylation in Staphylococcus aureus. Curr Microbiol. 2014;69:121–126. doi:10.1007/s00284-014-0563-2.
  • Zhang Y, Lu P, Pan Z, Zhu Y, Ma J, Zhong X, Dong W, Lu C, Yao H. SssP1, a Streptococcus suis fimbria-like protein transported by the SecY2/A2 system, contributes to bacterial virulence. Appl Environ Microbiol. 2018;84:e01385–18. doi:10.1128/AEM.01385-18.
  • Sanchez CJ, Shivshankar P, Stol K, Trakhtenbroit S, Sullam PM, Sauer K, Hermans PW, Orihuela CJ. The pneumococcal serine-rich repeat protein is an intra-species bacterial adhesin that promotes bacterial aggregation in vivo and in biofilms. PLoS Pathog. 2010;6:e1001044. doi:10.1371/journal.ppat.1000975.
  • Shivshankar P, Sanchez C, Rose LF, Orihuela CJ. The Streptococcus pneumoniae adhesin PsrP binds to Keratin 10 on lung cells. Mol Microbiol. 2009;73:663–679. doi:10.1111/j.1365-2958.2009.06796.x.
  • Couvigny B, Lapaque N, Rigottier-Gois L, Guillot A, Chat S, Meylheuc T, Kulakauskas S, Rohde M, Mistou M-Y, Renault P, et al. Three glycosylated serine-rich repeat proteins play a pivotal role in adhesion and colonization of the pioneer commensal bacterium, Streptococcus salivarius. Environ Microbiol. 2017;19:3579–3594. doi:10.1111/1462-2920.13853.
  • Latousakis D, Nepravishta R, Rejzek M, Wegmann U, Le Gall G, Kavanaugh D, Colquhoun IJ, Frese S, MacKenzie DA, Walter J, et al. Serine-rich repeat protein adhesins from Lactobacillus reuteri display strain specific glycosylation profiles. Glycobiology. 2019;29:45–58. doi:10.1093/glycob/cwy100.
  • Latousakis D, Juge N. How sweet are our gut beneficial bacteria? A focus on protein glycosylation in Lactobacillus. Int J Mol Sci. 2018;19:136. doi:10.3390/ijms19010136.
  • Frese SA, MacKenzie DA, Peterson DA, Schmaltz R, Fangman T, Zhou Y, Zhang C, Benson AK, Cody LA, Mulholland F, et al. Molecular characterization of host-specific biofilm formation in a vertebrate gut symbiont. PLoS Genet. 2013;9:e1004057. doi:10.1371/journal.pgen.1004057.
  • Sequeira S, Kavanaugh D, MacKenzie DA, Šuligoj T, Walpole S, Leclaire C, Gunning AP, Latousakis D, Willats WGT, Angulo J, et al. Structural basis for the role of serine-rich repeat proteins from Lactobacillus reuteri in gut microbe–host interactions. Proc Natl Acad Sci 2018; 115:E2706–2715. doi:10.1073/pnas.1715016115
  • Rigel NW, Braunstein M. A new twist on an old pathway - accessory secretion systems. Mol Microbiol. 2008;69:291–302. doi:10.1111/j.1365-2958.2008.06294.x.
  • Feltcher ME, Braunstein M. Emerging themes in SecA2-mediated protein export. Nat Rev Microbiol. 2012;10:779–789. doi:10.1038/nrmicro2874.
  • Prabudiansyah I, Driessen AJM. The canonical and accessory Sec system of gram-positive bacteria. Curr Top Microbiol Immunol. 2017;404:45–67. doi:10.1007/82_2016_9.
  • Bensing BA, Seepersaud R, Yen YT, Sullam PM. Selective transport by SecA2: an expanding family of customized motor proteins. Biochim Biophys Acta. 2014;1843:1674–1686. doi:10.1016/j.bbamcr.2013.10.019.
  • Wegmann U, MacKenzie DA, Zheng J, Goesmann A, Roos S, Swarbreck D, Walter J, Crossman LC, Juge N. The pan-genome of Lactobacillus reuteri strains originating from the pig gastrointestinal tract. BMC Genomics. 2015;16:1023. doi:10.1186/s12864-015-2216-7.
  • Delorme C, Abraham AL, Renault P, Guedon E. Genomics of Streptococcus salivarius, a major human commensal. Infect Genet Evol. 2015;33:381–392. doi:10.1016/j.meegid.2014.10.001.
  • Gautam M, Chopra KB, Douglas DD, Stewart RA, Kusne S. Streptococcus salivarius Bacteremia and spontaneous bacterial peritonitis in liver transplantation candidates. Liver Transplant. 2007;13:1582–1588. doi:10.1002/lt.21277.
  • Doyuk E, Ormerod OJ, Bowler I. Native valve endocarditis due to Streptococcus vestibularis and Streptococcus oralis. J Infect. 2002;45:39–41.
  • Cunliffe NA, Jacob AJ. Streptococcus vestibularis bacteraemia. J Infect. 1997;34:85. doi:10.1016/S0163-4453(97)80017-5.
  • Sehu MM, Heney C, Chandra S, Bergh H, Nimmo G. Streptococcus salivarius meningitis post spinal procedure: diagnosis by 16S and a call to better aseptic practices. Int J Infect Dis. 2014;21:405. doi:10.1016/j.ijid.2014.03.1256.
  • Gupta SS, Sarasam R, Wartak S, Namana V. Splenic and Kidney Infarct: sequelae of Subacute Streptococcus mitis Bacterial Endocarditis. J Glob Insect Dis. 2017;9:123–124. doi:10.4103/jgid.jgid_181_16.
  • Byrd VS, Nemeth AS. A case of infective endocarditis and spinal epidural abscess caused by Streptococcus mitis bacteremia. Case Rep Infect Dis. 2017 Article ID 7289032. 3.
  • Matthys C, Claeys G, Verschraegen G, Wauters G, Vogelaers D, De Baere T, Verhelst R, Van Nooten G, Van Coster R, Vaneechoutte M. Streptococcus cristatus isolated from a resected heart valve and blood cultures: case reports and application of phenotypic and genotypic techniques for identification. Acta Clin Belg. 2006;61:196–200. doi:10.1179/acb.2006.034.
  • Denapaite D, Rieger M, Köndgen S, Brückner R, Ochigava I, Kappeler P, Mätz-Rensing K, Leendertz F, Hakenbeck R. Highly variable streptococcus oralis strains are common among viridans streptococci isolated from primates. mSphere. 2016;1:e00041–15. doi:10.1128/mSphere.00041-15.
  • Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics. 2004;5:113. doi:10.1186/1471-2105-5-113.
  • Knyaz C, Stecher G, Li M, Kumar S, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547–1549. doi:10.1093/molbev/msy096.
  • He ZL, Zhang HK, Gao SH, Lercher MJ, Chen WH, Hu SN. Evolview v2: an online visualization and management tool for customized and annotated phylogenetic trees. Nucleic Acids Res. 2016;44:W236–241. doi:10.1093/nar/gkw370.
  • Schulte T, Löfling J, Mikaelsson C, Kikhney A, Hentrich K, Diamante A, Ebel C, Normark S, Svergun D, Henriques-Normak B, et al. The basic keratin 10-binding domain of the virulence-associated pneumococcal serine-rich protein PsrP adopts a novel MSCRAMM fold. Open Biol. 2014;4:130090. doi:10.1098/rsob.140120.
  • Garnett JA, Simpson PJ, Taylor J, Benjamin SV, Tagliaferri C, Cota E, Chen Y-YM, Wu H, Matthews S. Structural insight into the role of Streptococcus parasanguinis Fap1 within oral biofilm formation. Biochem Biophys Res Commun. 2012;417:421–426. doi:10.1016/j.bbrc.2011.11.131.
  • Delorme C, Guédon E, Pons N, Cruaud C, Couloux A, Loux V, Chiapello H, Poyart C, Gautier C, Sanchez N, et al. Complete genome sequence of the clinical Streptococcus salivarius strain CCHSS3. J Bacteriol. 2011;193:5041–5042. doi:10.1128/JB.05416-11.
  • Geng JN, Huang SC, Li SL, Hu SN, Chen YYM. Complete genome sequence of the ureolytic Streptococcus salivarius strain 57.I. J Bacteriol. 2011;193:5596–5597. doi:10.1128/JB.05670-11.
  • Peumans WJ, Van Damme EJM, Barre A, Rouge P. Classification of plant lectins in families of structurally and evolutionary related proteins. In: Wu AM, editor. Molecular immunology of complex carbohydrates-2. New York (NY): Kluwer Academic/Plenum Publ; 2001. p. 27–54.
  • Wastfelt M, StalhammarCarlemalm M, Delisse AM, Cabezon T, Lindahl G. Identification of a family of streptococcal surface proteins with extremely repetitive structure. J Biol Chem. 1996;271:18892–18897.
  • Kuroda M, Tanaka Y, Aoki R, Shu D, Tsumoto K, Ohta T. Staphylococcus aureus giant protein Ebh is involved in tolerance to transient hyperosmotic pressure. Biochem Biophys Res Commun. 2008;374:237–241. doi:10.1016/j.bbrc.2008.07.037.
  • Chen Q, Sun B, Wu H, Peng Z, Fives-Taylor PM. Differential roles of individual domains in selection of secretion route of a Streptococcus parasanguinis serine-rich adhesin, Fap1. J Bacteriol. 2007;189:7610–7617. doi:10.1128/JB.00748-07.
  • Zhu F, Zhang H, Yang T, Haslam SM, Dell A, Wu H. Engineering and dissecting the glycosylation pathway of a streptococcal serine-rich repeat adhesin. J Biol Chem. 2016;291:27354–27363. doi:10.1074/jbc.M116.752998.
  • Jiang Y-L, Jin H, Yang H-B, Zhao R-L, Wang S, Chen Y, Zhou C-Z. Defining the enzymatic pathway for polymorphic O-glycosylation of the pneumococcal serine-rich repeat protein PsrP. J Biol Chem. 2017;292:6213–6224. doi:10.1074/jbc.M116.770446.
  • Takamatsu D, Bensing BA, Sullam PM. Four proteins encoded in the gspB-secY2A2 operon of Streptococcus gordonii mediate the intracellular glycosylation of the platelet-binding protein GspB. J Bacteriol. 2004;186:7100–7111. doi:10.1128/JB.186.21.7100-7111.2004.
  • Shi -W-W, Jiang Y-L, Zhu F, Yang Y-H, Shao Q-Y, Yang H-B, Ren Y-M, Wu H, Chen Y, Zhou C-Z. Structure of a novel O-linked N-acetyl-D-glucosamine (O-GlcNAc) transferase, GtfA, reveals insights into the glycosylation of pneumococcal serine-rich repeat adhesins. J Biol Chem. 2014;289:20898–20907. doi:10.1074/jbc.M114.581934.
  • Chen Y, Seepersaud R, Bensing BA, Sullam PM, Rapoport TA. Mechanism of a cytosolic O-glycosyltransferase essential for the synthesis of a bacterial adhesion protein. Proc Natl Acad Sci USA. 2016;113:E1190– 1199. doi:10.1073/pnas.1600494113.
  • Zhu F, Zhang H, Wu H. A conserved domain is crucial for acceptor substrate binding in a family of glucosyltransferases. J Bacteriol. 2015;197:510–517. doi:10.1128/JB.02267-14.
  • Chen Y, Bensing BA, Seepersaud R, Mi W, Liao M, Jeffrey PD, Shajahan A, Sonon RN, Azadi P, Sullam PM, et al. Unraveling the sequence of cytosolic reactions in the export of GspB adhesin from Streptococcus gordonii. J Biol Chem. 2018;293:5360–5373. doi:10.1074/jbc.RA117.000963.
  • Zhang H, Zhu F, Yang T, Ding L, Zhou M, Li J, Haslam SM, Dell A, Erlandsen H, Wu H. The highly conserved domain of unknown function 1792 has a distinct glycosyltransferase fold. Nat Commun. 2014;5:4339. doi:10.1038/ncomms5972.
  • Seepersaud R, Sychantha D, Bensing BA, Clarke AJ, Sullam PM. O-acetylation of the serine-rich repeat glycoprotein GspB is coordinated with accessory Sec transport. PLoS Pathog. 2017;13:e1006558. doi:10.1371/journal.ppat.1006558.
  • Seepersaud R, Bensing BA, Yen YT, Sullam PM. The accessory Sec protein Asp2 modulates GlcNAc deposition onto the serine-rich repeat glycoprotein GspB. J Bacteriol. 2012;194:5564–5575. doi:10.1128/JB.01000-12.
  • Varki A, Cummings RD, Aebi M, Packer NH, Seeberger PH, Esko JD, Stanley P, Hart G, Darvill A, Kinoshita T, et al. Symbol nomenclature for graphical representations of glycans. Glycobiology. 2015;25:1323–1324. doi:10.1093/glycob/cwv091.
  • Mistou M-Y, Dramsi S, Brega S, Poyart C, Trieu-Cuot P. Molecular dissection of the secA2 locus of group B Streptococcus reveals that glycosylation of the Srr1 LPXTG protein is required for full virulence. J Bacteriol. 2009;191:4195–4206. doi:10.1128/JB.01673-08.
  • Lizcano A, Akula Suresh Babu R, Shenoy AT, Saville AM, Kumar N, D’Mello A, Hinojosa CA, Gilley RP, Segovia J, Mitchell TJ, et al. Transcriptional organization of pneumococcal psrP-secY2A2 and impact of GtfA and GtfB deletion on PsrP-associated virulence properties. Microbes Infect. 2017;19:323–333. doi:10.1016/j.micinf.2017.04.001.
  • Mitchell TJ. The pathogenesis of streptococcal infections: from tooth decay to meningitis. Nat Rev Microbiol. 2003;1:219–230. doi:10.1038/nrmicro771.
  • Tong SYC, Davis JS, Eichenberger E, Holland TL, Fowler VG. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 2015;28:603–661. doi:10.1128/CMR.00134-14.
  • Takamatsu D, Bensing BA, Prakobphol A, Fisher SJ, Sullam PM. Binding of the streptococcal surface glycoproteins GspB and Hsa to human salivary proteins. Infect Immun. 2006;74:1933–1940. doi:10.1128/IAI.74.3.1933-1940.2006.
  • Xiong YQ, Bensing BA, Bayer AS, Chambers HF, Sullam PM. Role of the serine-rich surface glycoprotein GspB of Streptococcus gordonii in the pathogenesis of infective endocarditis. Microb Pathog. 2008;45:297–301. doi:10.1016/j.micpath.2008.06.004.
  • Takamatsu D, Bensing BA, Cheng H, Jarvis GA, Siboo IR, López JA, Griffiss JM, Sullam PM. Binding of the Streptococcus gordonii surface glycoproteins GspB and Hsa to specific carbohydrate structures on platelet membrane glycoprotein Ibα. Mol Microbiol. 2005;58:380–392. doi:10.1111/j.1365-2958.2005.04830.x.
  • Takahashi Y, Yajima A, Cisar JO, Konishi K. Functional analysis of the Streptococcus gordonii DL1 sialic acid-binding adhesin and its essential role in bacterial binding to platelets. Infect Immun. 2004;72:3876–3882. doi:10.1128/IAI.72.7.3876-3882.2004.
  • Bensing BA, Khedri Z, Deng L, Yu H, Prakobphol A, Fisher SJ, Chen X, Iverson TM, Varki A, Sullam PM. Novel aspects of sialoglycan recognition by the Siglec-like domains of streptococcal SRR glycoproteins. Glycobiology. 2016;26:1222–1234. doi:10.1093/glycob/cww042.
  • Schulte T, Mikaelsson C, Beaussart A, Kikhney A, Deshmukh M, Wolniak S, Pathak A, Ebel C, Löfling J, Fogolari F, et al. The BR domain of PsrP interacts with extracellular DNA to promote bacterial aggregation; structural insights into pneumococcal biofilm formation. Sci Rep. 2016;6:32371. doi:10.1038/srep32371.
  • Yang Y-H, Jiang Y-L, Zhang J, Wang L, Bai X-H, Zhang S-J, Ren Y-M, Li N, Zhang Y-H, Zhang Z, et al. Structural insights into srap-mediated Staphylococcus aureus adhesion to host cells. PLoS Pathog. 2014;10:e1004169. doi:10.1371/journal.ppat.1004169.
  • Siboo IR, Chambers HF, Sullam PM. Role of SraP, a serine-rich surface protein of staphylococcus aureus, in binding to human platelets. Infect Immun. 2005;73:2273–2280. doi:10.1128/IAI.73.4.2273-2280.2005.
  • Bensing BA, Loukachevitch LV, McCulloch KM, Yu H, Vann KR, Wawrzak Z, Anderson S, Chen X, Sullam PM, Iverson TM. Structural basis for sialoglycan binding by the Streptococcus sanguinis SrpA adhesin. J Biol Chem. 2016;291:7230–7240. doi:10.1074/jbc.M115.701425.
  • Seo HS, Minasov G, Seepersaud R, Doran KS, Dubrovska I, Shuvalova L, Anderson WF, Iverson TM, Sullam PM. Characterization of fibrinogen binding by glycoproteins Srr1 and Srr2 of Streptococcus agalactiae. J Biol Chem. 2013;288:35982–35996. doi:10.1074/jbc.M113.513358.
  • Samen U, Reinscheid DJ, Reinscheid DJ, Borges F. The surface protein srr-1 of Streptococcus agalactiae binds human keratin 4 and promotes adherence to epithelial HEp-2 cells. Infect Immun. 2007;75:5405–5414. doi:10.1128/IAI.00717-07.
  • Ramboarina S, Garnett JA, Zhou M, Li Y, Peng Z, Taylor JD, Lee W-C, Bodey A, Murray JW, Alguel Y, et al. Structural insights into serine-rich fimbriae from Gram-positive bacteria. J Biol Chem. 2010;285:32446–32457. doi:10.1074/jbc.M110.128165.
  • Pyburn TM, Bensing BA, Xiong YQ, Melancon BJ, Tomasiak TM, Ward NJ, Yankovskaya V, Oliver KM, Cecchini G, Sulikowski GA, et al. A structural model for binding of the serine-rich repeat adhesin GspB to host carbohydrate receptors. PLoS Pathog. 2011;7:e1002112. doi:10.1371/journal.ppat.1002112.
  • Sundaresan R, Samen U, Ponnuraj K. Expression, purification, crystallization and preliminary X-ray diffraction studies of the human keratin 4-binding domain of serine-rich repeat protein 1 from Streptococcus agalactiae. Acta Crystallogr F-Struct Biol Cryst Commun. 2011;67:1582–1585. doi:10.1107/S1744309111040413.
  • Sundaresan R, Samen U, Ponnuraj K. Structure of KRT4 binding domain of Srr-1 from Streptococcus agalactiae reveals a novel beta-sheet complementation. Int J Biol Macromol. 2015;75:97–105. doi:10.1016/j.ijbiomac.2014.12.048.
  • Sheen TR, Jimenez A, Wang NY, Banerjee A, van Sorge NM, Doran KS. Serine-rich repeat proteins and pili promote Streptococcus agalactiae colonization of the vaginal tract. J Bacteriol. 2011;193:6834–6842. doi:10.1128/JB.00094-11.
  • Wang N-Y, Patras KA, Seo HS, Cavaco CK, Rösler B, Neely MN, Sullam PM, Doran KS. Group B streptococcal serine-rich repeat proteins promote interaction with fibrinogen and vaginal colonization. J Infect Dis. 2014;210:982–991. doi:10.1093/infdis/jiu151.
  • Seo HS, Mu R, Kim BJ, Doran KS, Sullam PM. Binding of glycoprotein srr1 of Streptococcus agalactiae to fibrinogen promotes attachment to brain endothelium and the development of meningitis. PLoS Path. 2012;8:e64204. doi:10.1371/journal.ppat.1002947.
  • Six A, Bellais S, Bouaboud A, Fouet A, Gabriel C, Tazi A, Dramsi S, Trieu-Cuot P, Poyart C. Srr2, a multifaceted adhesin expressed by ST-17 hypervirulent Group B Streptococcus involved in binding to both fibrinogen and plasminogen. Mol Microbiol. 2015;97:1209–1222. doi:10.1111/mmi.13097.
  • van Sorge NM, Quach D, Gurney MA, Sullam PM, Nizet V, Doran KS. The group B streptococcal serine-rich repeat 1 glycoprotein mediates penetration of the blood-brain barrier. J Infect Dis. 2009;199:1479–1487. doi:10.1086/598217.
  • Deng L, Bensing BA, Thamadilok S, Yu H, Lau K, Chen X, Ruhl S, Sullam PM, Varki A, Orihuela CJ. Oral streptococci utilize a Siglec-like domain of serine-rich repeat adhesins to preferentially target platelet sialoglycans in human blood. PLoS Pathog. 2014;10:e1004540. doi:10.1371/journal.ppat.1004540.
  • Kim AR, Ahn B, Kim HY, Seo HS, Yun CH, Han SH. Serine-rich repeat adhesin gordonii surface protein B is important for Streptococcus gordonii biofilm formation. J Endodont. 2016;42:1767–1772. doi:10.1016/j.joen.2016.08.016.
  • Oguchi R, Takahashi Y, Shimazu K, Urano-Tashiro Y, Kawarai T, Konishi K, Karibe H. Contribution of Streptococcus gordonii Hsa adhesin to biofilm formation. Jpn J Infect Dis. 2017;70:399–404. doi:10.7883/yoken.JJID.2017.E001.
  • Takahashi Y, Takashima E, Shimazu K, Yagishita H, Aoba T, Konishi K. Contribution of sialic acid-binding adhesin to pathogenesis of experimental endocarditis caused by Streptococcus gordonii DL1. Infect Immun. 2006;74:740–743. doi:10.1128/IAI.74.1.740-743.2006.
  • Takamatsu D, Bensing BA, Cheng H, Jarvis GA, Siboo IR, López JA, Griffiss JM, Sullam PM. Binding of the Streptococcus gordonii surface glycoproteins GspB and Hsa to specific carbohydrate structures on platelet membrane glycoprotein Ibalpha. Mol Microbiol. 2005;58:380–392. doi:10.1111/j.1365-2958.2005.04830.x.
  • Urano-Tashiro Y, Takahashi Y, Oguchi R, Konishi K. Two arginine residues of Streptococcus gordonii sialic acid-binding adhesin Hsa are essential for interaction to host cell receptors. PLoS One. 2016;11:e0154098. doi:10.1371/journal.pone.0154098.
  • Yajima A, Urano-Tashiro Y, Shimazu K, Takashima E, Takahashi Y, Konishi K. Hsa, an adhesin of Streptococcus gordonii DL1, binds to alpha 2-3-linked sialic acid on glycophorin A of the erythrocyte membrane. Microbiol Immunol. 2008;52:69–77. doi:10.1111/j.1348-0421.2008.00015.x.
  • Loukachevitch LV, Bensing BA, Yu H, Zeng J, Chen X, Sullam PM, Iverson TM. Structures of the Streptococcus sanguinis SrpA binding region with human sialoglycans suggest features of the physiological ligand. Biochemistry. 2016;55:5927–5937. doi:10.1021/acs.biochem.6b00704.
  • Dawson NL, Lewis TE, Das S, Lees JG, Lee D, Ashford P, Orengo CA, Sillitoe I. CATH: an expanded resource to predict protein function through structure and sequence. Nucleic Acids Res. 2017;45:D289–295. doi:10.1093/nar/gkw1098.
  • Duar RM, Lin XB, Zheng J, Martino ME, Grenier T, Pérez-Muñoz ME, Leulier F, Gänzle M, Walter J. Lifestyles in transition: evolution and natural history of the genus Lactobacillus. FEMS Microbiol Rev. 2017;41:S27–48. doi:10.1093/femsre/fux030.