4,521
Views
17
CrossRef citations to date
0
Altmetric
Research Paper

Combined exposure to non-antibiotic pharmaceutics and antibiotics in the gut synergistically promote the development of multi-drug-resistance in Escherichia coli

, , , , , , , , , , , & show all
Article: 2018901 | Received 28 Aug 2021, Accepted 03 Dec 2021, Published online: 11 Jan 2022

References

  • Norrby R, Powell M, Aronsson B, Monnet DL, Lutsar I, Bocsan IS, Cars O, Giamarellou H, Gyssens IC. The Bacterial Challange: time to React. Stockholm: Innovative Incentives for Effective Antibacterials. 2009.
  • O’Neill J. Antimicrobial resistance: tackling a crisis for the health and wealth of nations. London: The Review on Antimicrobial Resistance. 2015.
  • Feng J, Li B, Jiang X, Yang Y, Wells GF, Zhang T, Li X . Antibiotic resistome in a large-scale healthy human gut microbiota deciphered by metagenomic and network analyses. Environ Microbiol. 2018;20(1):355–17. doi:10.1111/1462-2920.14009.
  • Modi SR, Collins JJ, Relman DA. Antibiotics and the gut microbiota. J Clin Invest. 2014;124(10):4212–4218. doi:10.1172/JCI72333.
  • Akbar N, Siddiqui R, Sagathevan KA, Khan NA. Gut bacteria of animals/pests living in polluted environments are a potential source of antibacterials. Appl Microbiol Biotechnol. 2019;103(10):3955–3964. doi:10.1007/s00253-019-09783-2.
  • Akbar N, Siddiqui R, Sagathevan K, Khan NA. Gut bacteria of animals living in polluted environments exhibit broad-spectrum antibacterial activities. Int Microbiol. 2020;23(4):511–526. doi:10.1007/s10123-020-00123-3.
  • Duan Y, Chen Z, Tan L, Wang X, Xue Y, Wang S, Wang Q, Das R, Lin H, Hou J, et al. Gut resistomes, microbiota and antibiotic residues in Chinese patients undergoing antibiotic administration and healthy individuals. Sci Total Environ. 2020;705:135674. doi:10.1016/j.scitotenv.2019.135674.
  • Wang Q, Duan Y-J, Wang S-P, Wang L-T, Hou Z-L, Cui Y-X, Hou J, Das R, Mao D-Q, Luo Y . Occurrence and distribution of clinical and veterinary antibiotics in the faeces of a Chinese population. J Hazard Mater. 2020;383:121129. doi:10.1016/j.jhazmat.2019.121129.
  • Jin M, Lu J, Chen Z, Nguyen SH, Mao L, Li J, Yuan Z, Guo J . Antidepressant fluoxetine induces multiple antibiotics resistance in Escherichia coli via ROS-mediated mutagenesis. Environ Int. 2018;120:421–430. doi:10.1016/j.envint.2018.07.046.
  • Li L, Kromann S, Olsen JE, Svenningsen SW, Olsen RH. Insight into synergetic mechanisms of tetracycline and the selective serotonin reuptake inhibitor, sertraline, in a tetracycline-resistant strain of Escherichia coli. J Antibiot (Tokyo). 2017;70(9):944–953. doi:10.1038/ja.2017.78.
  • Otto RG, van Gorp E, Kloezen W, Meletiadis J, van Den Berg S, Mouton JW. An alternative strategy for combination therapy: interactions between polymyxin B and non-antibiotics. Int J Antimicrob Agents. 2019;53(1):34–39. doi:10.1016/j.ijantimicag.2018.09.003.
  • Rivet-Noor C, Gaultier A. The role of gut mucins in the etiology of depression. Front Behav Neurosci. 2020;14:592388. doi:10.3389/fnbeh.2020.592388.
  • Dean J, Keshavan M. The neurobiology of depression: an integrated view. Asian J Psychiatr. 2017;27:101–111. doi:10.1016/j.ajp.2017.01.025.
  • Santomauro DF, Mantilla Herrera AM, Shadid J, Zheng P, Ashbaugh C, Pigott DM, Abbafati C, Adolph C, Amlag JO, Aravkin AY, et al. Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic. The Lancet. 2021;398(10312):1700–1712. doi:10.1016/S0140-6736(21)02143-7.
  • Wang H, La Russa M, Qi LS. CRISPR/Cas9 in genome editing and beyond. Annu Rev Biochem. 2016;85(1):227–264. doi:10.1146/annurev-biochem-060815-014607.
  • Weinberger J, Klaper R. Environmental concentrations of the selective serotonin reuptake inhibitor fluoxetine impact specific behaviors involved in reproduction, feeding and predator avoidance in the fish Pimephales promelas (fathead minnow). Aquat Toxicol. 2014;151:77–83 doi:10.1016/j.aquatox.2013.10.012.
  • Cohen SP, McMurry LM, Hooper DC, Wolfson JS, Levy SB. Cross-resistance to fluoroquinolones in multiple-antibiotic-resistant (Mar) Escherichia coli selected by tetracycline or chloramphenicol: decreased drug accumulation associated with membrane changes in addition to OmpF reduction. Antimicrob Agents Chemother. 1989;33(8):1318–1325. doi:10.1128/AAC.33.8.1318.
  • Goldman JD, White DG, Levy SB. Multiple antibiotic resistance (mar) locus protects Escherichia coli from rapid cell killing by fluoroquinolones. Antimicrob Agents Chemother. 1996;40(5):1266–1269. doi:10.1128/AAC.40.5.1266.
  • Cohen SP, Hachler H, Levy SB. Genetic and functional analysis of the multiple antibiotic resistance (mar) locus in Escherichia coli. J Bacteriol. 1993;175(5):1484–1492. doi:10.1128/jb.175.5.1484-1492.1993.
  • Li XZ, Plesiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev. 2015;28(2):337–418. doi:10.1128/CMR.00117-14.
  • Tang X, Chang S, Qiao W, Luo Q, Chen Y, Jia Z, Coleman J, Zhang K, Wang T, Zhang Z, et al. Structural insights into outer membrane asymmetry maintenance in Gram-negative bacteria by MlaFEDB. Nat Struct Mol Biol. 2021;28(1):81–91. doi:10.1038/s41594-020-00532-y.
  • Chi X, Fan Q, Zhang Y, Liang K, Wan L, Zhou Q, Li Y. Structural mechanism of phospholipids translocation by MlaFEDB complex. Cell Res. 2020;30(12):1127–1135. doi:10.1038/s41422-020-00404-6.
  • Imlay JA. Transcription factors that defend bacteria against reactive oxygen species. Annu Rev Microbiol. 2015;69(1):93–108. doi:10.1146/annurev-micro-091014-104322.
  • Imlay JA. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat Rev Microbiol. 2013;11(7):443–454. doi:10.1038/nrmicro3032.
  • Chiang SM, Schellhorn HE. Regulators of oxidative stress response genes in Escherichia coli and their functional conservation in bacteria. Arch Biochem Biophys. 2012;525(2):161–169. doi:10.1016/j.abb.2012.02.007.
  • Koo MS, Lee JH, Rah SY, Yeo WS, Lee JW, Lee KL, Koh YS, Kang SO, Roe JH . A reducing system of the superoxide sensor SoxR in Escherichia coli. EMBO J. 2003;22(11):2614–2622. doi:10.1093/emboj/cdg252.
  • Nishino K, Yamaguchi A. Analysis of a Complete Library of Putative Drug Transporter Genes in Escherichia coli. J Bacteriol. 2001;183(20):5803–5812. doi:10.1128/JB.183.20.5803-5812.2001.
  • Miryala SK, Ramaiah S. Exploring the multi-drug resistance in Escherichia coli O157:H7 by gene interaction network: a systems biology approach. Genomics. 2019;111(4):958–965. doi:10.1016/j.ygeno.2018.06.002.
  • Holdsworth SR, Law CJ. Functional and biochemical characterisation of the Escherichia coli major facilitator superfamily multidrug transporter MdtM. Biochimie. 2012;94(6):1334–1346. doi:10.1016/j.biochi.2012.03.001.
  • White DG, Goldman JD, Demple B, Levy SB. Role of the acrAB locus in organic solvent tolerance mediated by expression of marA, soxS, or robA in Escherichia coli. J Bacteriol. 1997;179(19):6122–6126. doi:10.1128/jb.179.19.6122-6126.1997.
  • Du D, Neuberger A, Orr MW, Newman CE, Hsu PC, Samsudin F, Szewczak-Harris A, Ramos LM, Debela M, Khalid S, et al. Interactions of a bacterial RND transporter with a transmembrane small protein in a lipid environment. Structure. 2020;28(6):625–34 e6. doi:10.1016/j.str.2020.03.013.
  • Hobbs EC, Yin X, Paul BJ, Astarita JL, Storz G. Conserved small protein associates with the multidrug efflux pump AcrB and differentially affects antibiotic resistance. Proc Natl Acad Sci U S A. 2012;109(41):16696–16701. doi:10.1073/pnas.1210093109.
  • Jin M, Lu J, Chen Z, Nguyen SH, Mao L, Li J, Yuan Z, Guo J. Antidepressant fluoxetine induces multiple antibiotics resistance in Escherichia coli via ROS-mediated mutagenesis. Environ Int. 2018;120:421–430 doi:10.1016/j.envint.2018.07.046.
  • Danner MC, Robertson A, Behrends V, Reiss J. Antibiotic pollution in surface fresh waters: occurrence and effects. Sci Total Environ. 2019;664:793–804. doi:10.1016/j.scitotenv.2019.01.406.
  • Maier L, Pruteanu M, Kuhn M, Zeller G, Telzerow A, Anderson EE, Brochado AR, Fernandez KC, Dose H, Mori H, et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature. 2018;555(7698):623–628. doi:10.1038/nature25979.
  • Zhao Y, Zhou Y, Zhu Q, Xia B, Ma W, Xiao X, Shi H, Zhang Y. Determination of antibiotic concentration in meconium and its association with fetal growth and development. Environ Int. 2019;123:70–78. doi:10.1016/j.envint.2018.11.053.
  • Bohnert JA, Szymaniak-Vits M, Schuster S, Kern WV. Efflux inhibition by selective serotonin reuptake inhibitors in Escherichia coli. J Antimicrob Chemother. 2011;66(9):2057–2060. doi:10.1093/jac/dkr258.
  • McGovern AS, Hamlin AS, Winter G. A review of the antimicrobial side of antidepressants and its putative implications on the gut microbiome. Aust N Z J Psychiatry. 2019;53(12):1151–1166. doi:10.1177/0004867419877954.
  • Okusu H, Ma D, Nikaido H. AcrAB efflux pump plays a major role in the antibiotic resistance phenotype of Escherichia coli multiple-antibiotic-resistance (Mar) mutants. J Bacteriol. 1996;178(1):306–308. doi:10.1128/jb.178.1.306-308.1996.
  • Duval V, McMurry LM, Foster K, Head JF, Levy SB. Mutational analysis of the multiple-antibiotic resistance regulator MarR reveals a ligand binding pocket at the interface between the dimerization and DNA binding domains. J Bacteriol. 2013;195(15):3341–3351. doi:10.1128/JB.02224-12.
  • Dharmaraja AT. Role of reactive oxygen species (ROS) in therapeutics and drug resistance in cancer and bacteria. J Med Chem. 2017;60(8):3221–3240. doi:10.1021/acs.jmedchem.6b01243.
  • Boinett CJ, Cain AK, Hawkey J, Do Hoang NT, Khanh NNT, Thanh DP, Dordel J, Campbell JI, Huong Lan NP, Mayho M, et al. Clinical and laboratory-induced colistin-resistance mechanisms in Acinetobacter baumannii. Microb Genom . 2019;5(2):e000246. doi:10.1099/mgen.0.000246.
  • Palmer LD, Minor KE, Mettlach JA, Rivera ES, Boyd KL, Caprioli RM, Spraggins JM, Dalebroux ZD, Skaar EP. Modulating isoprenoid biosynthesis increases lipooligosaccharides and restores Acinetobacter baumannii resistance to host and antibiotic stress. Cell Rep. 2020;32(10):108129. doi:10.1016/j.celrep.2020.108129.
  • Yang YJ, Singh RP, Lan X, Zhang CS, Sheng DH, Li YQ. Whole transcriptome analysis and gene deletion to understand the chloramphenicol resistance mechanism and develop a screening method for homologous recombination in Myxococcus xanthus. Microb Cell Fact. 2019;18(1):123. doi:10.1186/s12934-019-1172-3.
  • Zhang G, Sun K, Ai G, Li J, Tang N, Song Y, Wang C, Feng J. A novel family of intrinsic chloramphenicol acetyltransferase CATC in Vibrio parahaemolyticus: naturally occurring variants reveal diverse resistance levels against chloramphenicol. Int J Antimicrob Agents. 2019;54(1):75–79. doi:10.1016/j.ijantimicag.2019.03.012.
  • Montero CI, Johnson MR, Chou CJ, Conners SB, Geouge SG, Tachdjian S, Nichols JD, Kelly RM. Responses of Wild-Type and Resistant Strains of the Hyperthermophilic Bacterium Thermotoga maritima to Chloramphenicol Challenge. Appl Environ Microbiol. 2007;73(15):5058–5065. doi:10.1128/AEM.00453-07.
  • Dinos GP, Athanassopoulos CM, Missiri DA, Giannopoulou PC, Vlachogiannis IA, Papadopoulos GE, Papaioannou D, Kalpaxis DL . Chloramphenicol derivatives as antibacterial and anticancer agents: historic problems and current solutions. Antibiotics (Basel, Switzerland) . 2016;5(2):20. doi:10.3390/antibiotics5020020.
  • Jin ZJ. About the evaluation of drug combination. Acta Pharmacol Sin. 2004;25:146–147.
  • Guo J, Gao SH, Lu J, Bond PL, Verstraete W, Yuan Z. Copper Oxide Nanoparticles Induce Lysogenic Bacteriophage and Metal-Resistance Genes in Pseudomonas aeruginosa PAO1. ACS Appl Mater Interfaces. 2017;9(27):22298–22307. doi:10.1021/acsami.7b06433.
  • Li D, Zeng S, He M, Gu AZ. Water disinfection byproducts induce antibiotic resistance-role of environmental pollutants in resistance phenomena. Environ Sci Technol. 2016;50(6):3193–3201. doi:10.1021/acs.est.5b05113.
  • Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754–1760. doi:10.1093/bioinformatics/btp324.
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–408. doi:10.1006/meth.2001.1262.