2,145
Views
3
CrossRef citations to date
0
Altmetric
Review

The microbiome landscape in pediatric Crohn’s disease and therapeutic implications

ORCID Icon, , , , , & ORCID Icon show all
Article: 2247019 | Received 31 Mar 2023, Accepted 08 Aug 2023, Published online: 23 Aug 2023

References

  • Yu YR, Rodriguez JR. Clinical presentation of Crohn’s, ulcerative colitis, and indeterminate colitis: symptoms, extraintestinal manifestations, and disease phenotypes. Semin Pediatr Surg. 2017;26(6):349–23. doi:10.1053/j.sempedsurg.2017.10.003.
  • Rahmani P, Rasti G, Gorgi M, Motamed F, Sharifi P. Extraintestinal manifestation of inflammatory bowel disease and associated factors in pediatric patients. Ann Med Surg. 2022;75(February):103363. doi:10.1016/j.amsu.2022.103363.
  • Rogler G, Singh A, Kavanaugh A, Rubin DT. Extraintestinal manifestations of inflammatory bowel disease: current concepts, treatment, and implications for disease management. Gastroenterology. 2021;161(4):1118–1132. doi:10.1053/J.GASTRO.2021.07.042.
  • de Laffolie J. Epidemiological research and treatment data analysis for chronic inflammatory bowel diseases: improvement in care of children and adolescents. Monatsschr Kinderheilkd. 2020;168(4):298–313. doi:10.1007/s00112-020-00852-9.
  • Øyri SF, Muzes G, Sipos F. Dysbiotic gut microbiome: a key element of Crohn’s disease. Comp Immunol Microbiol Infect Dis. 2015;43:36–49. doi:10.1016/j.cimid.2015.10.005.
  • Tiffany CR, Bäumler AJ. Dysbiosis: from fiction to function. Am J Physiol - Gastrointest Liver Physiol. 2019;317(5):G602–8. doi:10.1152/AJPGI.00230.2019.
  • Levy M, Kolodziejczyk AA, Thaiss CA, Elinav E. Dysbiosis and the immune system. Nat Rev Immunol. 2017;17(4):219–232. doi:10.1038/nri.2017.7.
  • Petersen C, Round JL. Defining dysbiosis and its influence on host immunity and disease. Cell Microbiol. 2014;16(7):1024–1033. doi:10.1111/cmi.12308.
  • Proctor L. What‗s next for the human microbiome? Nature. 2019;569(7758):623. doi:10.1038/d41586-019-01654-0.
  • Adolph TE, Meyer M, Schwärzler J, Mayr L, Grabherr F, Tilg H. The metabolic nature of inflammatory bowel diseases. Nat Rev Gastroenterol Hepatol. 2022;19(12):753–767. doi:10.1038/s41575-022-00658-y.
  • Uchiyama K, Haruyama Y, Shiraishi H, Katahira K, Abukawa D, Ishige T, Tajiri H, Uchida K, Uchiyama K, Washio M, et al. Association between passive smoking from the mother and pediatric crohn’s disease: a Japanese multicenter study. Int J Environ Res Public Health. 2020;17(8):2926. doi:10.3390/ijerph17082926.
  • Mahid SS, Minor KS, Stromberg AJ, Galandiuk S. Active and passive smoking in childhood is related to the development of inflammatory bowel disease. Inflamm Bowel Dis. 2007;13(4):431–438. doi:10.1002/ibd.20070.
  • Salih A, Widbom L, Hultdin J, Karling P. Smoking is associated with risk for developing inflammatory bowel disease including late onset ulcerative colitis: a prospective study. Scand J Gastroenterol. 2018;53(2):173–178. doi:10.1080/00365521.2017.1418904.
  • Troelsen FS, Jick S. Antibiotic use in childhood and adolescence and risk of inflammatory bowel disease: a case-control study in the UK clinical practice Research datalink. Inflamm Bowel Dis. 2020;26(3):440–447. doi:10.1093/ibd/izz137.
  • Virta L, Auvinen A, Helenius H, Huovinen P, Kolho KL. Association of repeated exposure to antibiotics with the development of pediatric crohn’s disease - a nationwide, register-based Finnish case-control study. Am J Epidemiol. 2012;175(8):775–784. doi:10.1093/aje/kwr400.
  • Korelitz BI. Role of nonsteroidal anti-inflammatory drugs in exacerbation of inflammatory bowel disease. J Clin Gastroenterol. 2016;50(2):97–98. doi:10.1097/MCG.0000000000000444.
  • Ananthakrishnan AN, Higuchi LM, Huang ES, Khalili H, Richter JM, Fuchs CS, Chan AT. Aspirin, nonsteroidal anti-inflammatory drug use, and risk for Crohn disease and ulcerative colitis. Ann Intern Med. 2012;156(5):350–359. doi:10.7326/0003-4819-156-5-201203060-00007.
  • Khalili H, Higuchi LM, Ananthakrishnan AN, Richter JM, Feskanich D, Fuchs CS, Chan AT. Oral contraceptives, reproductive factors and risk of inflammatory bowel disease. Gut. 2013;62(8):1153–1159. doi:10.1136/gutjnl-2012-302362.
  • Ek WE, D’Amato M, Halfvarson J. The history of genetics in inflammatory bowel disease. Ann Gastroenterol. 2014;27:294–303.
  • Van Limbergen J, Wilson DC, Satsangi J. The genetics of Crohn’s disease. Annu Rev Genom Hum Genet. 2009;10(1):89–116. doi:10.1146/annurev-genom-082908-150013.
  • Thaiss CA, Zmora N, Levy M, Elinav E. The microbiome and innate immunity. Nature. 2016;535(7610):65–74. doi:10.1038/nature18847.
  • Kaser A, Zeissig S, Blumberg RS. Inflammatory bowel disease. Annu Rev Immunol. 2010;28:573–621. doi:10.1146/annurev-immunol-030409-101225.
  • Abraham C, Cho JH. T 2066. Bmj. 2009;361(21):2066–2078. doi:10.1056/NEJMra0804647.
  • Cui X, Ye Z, Wang D, Yang Y, Jiao CH, Ma J, Tang N, Zhang H. Aryl hydrocarbon receptor activation ameliorates experimental colitis by modulating the tolerogenic dendritic and regulatory T cell formation. Cell & Biosci. 2022;12(1):1–13. doi:10.1186/s13578-022-00780-z.
  • Davidson M, Saiki J. A novel gut-restricted aryl hydrocarbon receptor agonist with activity in the dextran sodium sulfate colitis murine model. Inflamm Bowel Dis. 2023;29(Supplement_1):S3–S3. doi:10.1093/ibd/izac247.006.
  • Petagna L, Antonelli A, Ganini C, Bellato V, Campanelli M, Divizia A, Efrati C, Franceschilli M, Guida AM, Ingallinella S, et al. Pathophysiology of Crohn’s disease inflammation and recurrence. Biol Direct. 2020;15(1):1–10. doi:10.1186/s13062-020-00280-5.
  • Cococcioni L, Panelli S, Varotto-Boccazzi I, Carlo D, Pistone D, Leccese G, Zuccotti GV, Comandatore F. Ibds and the pediatric age: their peculiarities and the involvement of the microbiota. Diges Liver Dis. 2021;53(1):17–25. doi:10.1016/j.dld.2020.10.033.
  • de Alencar Junior H, Paiotti APR, de Araújo Filho HB, Oshima CTF, Miszputen SJ, Ambrogini-Júnior O. The relationship between the commensal microbiota levels and Crohn’s disease activity. JGH Open. 2020;4(5):784–789. doi:10.1002/jgh3.12338.
  • Torres J, Mehandru S, Colombel JF, Peyrin-Biroulet L. Crohn’s disease. Lancet. 2017;389(10080):1741–1755. doi:10.1016/S0140-6736(16)31711-1.
  • Hansen R, Russell RK, Reiff C, Louis P, McIntosh F, Berry SH, Mukhopadhya I, Bisset MW, Barclay AR, Bishop J, et al. Microbiota of de-novo pediatric IBD: increased faecalibacterium prausnitzii and reduced bacterial diversity in Crohn’s but not in ulcerative colitis. Am J Gastroenterol. 2012;107(12):1913–1922. doi:10.1038/ajg.2012.335.
  • Frank DN, St. Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA. 2007;104(34):13780–13785. doi:10.1073/pnas.0706625104.
  • Lewis JD, Chen EZ, Baldassano RN, Otley AR, Griffiths AM, Lee D, Bittinger K, Bailey A, Friedman E, Hoffmann C, et al. Inflammation, antibiotics, and diet as environmental stressors of the gut microbiome in pediatric Crohn’s disease. Cell Host & Microbe. 2015;18(4):489–500. doi:10.1016/j.chom.2015.09.008.
  • Gastroenterol WJ. Emerging therapeutic options in inflammatory bowel disease. Contents. 2021;9327(48):8242–8261).
  • Ashton JJ, Gavin J, Beattie RM. Exclusive enteral nutrition in Crohn’s disease: evidence and practicalities. Clin Nutr. 2019;38(1):80–89. doi:10.1016/j.clnu.2018.01.020.
  • Heuschkel R, Pender S, Paintin M, Arnaud-Battandier F, Walker J, MacDonald T. Imbalance of stromelysin-1 and timp-1 mRNA and protein in the mucosal lesions of children with inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 1999;28(5):557. doi:10.1097/00005176-199905000-00073.
  • Xiao F, Gao X, Hu H, Le J, Chen Y, Shu X, Liang Z, Xu Y, Wang Y, Zhang T. Exclusive enteral nutrition exerts anti-inflammatory effects through modulating microbiota, bile acid metabolism, and immune activities. Nutr. 2022;14(21):4463. doi:10.3390/nu14214463.
  • Weingarden AR, Vaughn BP. Intestinal microbiota, fecal microbiota transplantation, and inflammatory bowel disease. Gut Microbes. 2017;8(3):238–252. doi:10.1080/19490976.2017.1290757.
  • Khanna S, Raffals LE. The microbiome in Crohn’s disease: role in pathogenesis and role of microbiome replacement therapies. Gastroenterol Clin North Am. 2017;46(3):481–492. doi:10.1016/j.gtc.2017.05.004.
  • Gruszecka J, Filip R. Does anti-TNF-α therapy affect the bacteriological profile of specimens collected from perianal lesions? A retrospective analysis in patients with Crohn’s disease. Int J Environ Res Public Health. 2022;19(5):2892. doi:10.3390/ijerph19052892.
  • Fousekis FS, Theopistos VI, Tsianos KH, Katsanos EV, Christodoulou DK. Hepatobiliary manifestations and complications in inflammatory bowel disease: a review. Gastroenterol Res. 2018;11(2):83–94. doi:10.14740/gr990w.
  • Ledder O, Turner D. Antibiotics in IBD: still a role in the biological era? Inflamm Bowel Dis. 2018;24(9):1676–1688. doi:10.1093/ibd/izy067.
  • Wilschanski M, Sherman P, Pencharz P, Davis L, Corey M, Griffiths A. Supplementary enteral nutrition maintains remission in paediatric Crohn’s disease. Gut. 1996;38(4):543–548. doi:10.1136/gut.38.4.543.
  • Levine A, Wine E, Assa A, Sigall Boneh R, Shaoul R, Kori M, Cohen S, Peleg S, Shamaly H, On A, et al. Crohn’s disease exclusion diet plus partial enteral nutrition induces sustained remission in a randomized controlled trial. Gastroenterol. 2019;157(2):440–450.e8. doi:10.1053/j.gastro.2019.04.021.
  • Hollister EB, Gao C, Versalovic J. Compositional and functional features of the gastrointestinal microbiome and their effects on human health. Gastroenterol. 2014;146(6):1449–1458. doi:10.1053/j.gastro.2014.01.052.
  • Arumugam M, Raes J, Pelletier E, Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto JM, et al. Enterotypes of the human gut microbiome. Nature. 2011;473(7346):174–180. doi:10.1038/nature09944.
  • Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA. Diversity of the human intestinal microbial flora. Sci. 2005;308(5728):1635–1638. doi:10.1126/science.1110591.
  • Harrell L, Wang Y, Antonopoulos D, Young V, Lichtenstein L, Huang Y, Hanauer S, Chang E. Standard colonic lavage alters the natural state of mucosal-associated microbiota in the human colon. PLoS One. 2012;7(2):e32545. doi:10.1371/journal.pone.0032545.
  • Maharshak N, Ringel Y, Katibian D, Lundqvist A, Sartor RB, Carroll IM, Ringel-Kulka T. Fecal and mucosa-associated intestinal microbiota in patients with diarrhea-predominant irritable bowel syndrome. Dig Dis Sci. 2018;63(7):1890–1899. doi:10.1007/s10620-018-5086-4.
  • Klymiuk I, Singer G, Castellani C, Trajanoski S, Obermüller B, Till H. Characterization of the luminal and mucosa-associated microbiome along the gastrointestinal tract: results from surgically treated preterm infants and a murine model. Nutr. 2021;13(3):1030. doi:10.3390/nu13031030.
  • Kashiwagi S, Naito Y, Inoue R, Takagi T, Nakano T, Inada Y, Fukui A, Katada K, Mizushima K, Kamada K, et al. Mucosa-associated microbiota in the gastrointestinal tract of healthy Japanese subjects. Digest. 2020;101(2):107–120. doi:10.1159/000496102.
  • Kim H, Sitarik AR, Woodcroft K, Johnson CC, Zoratti E. Birth mode, breastfeeding, pet exposure, and antibiotic use: associations with the gut microbiome and sensitization in children. Curr Allergy Asthma Rep. 2019;19(4). doi:10.1007/s11882-019-0851-9.
  • Haro C, Rangel-Zúñiga OA, Alcalá-Díaz JF, Gómez-Delgado F, Pérez-Martínez P, Delgado-Lista J, Quintana-Navarro GM, Landa BB, Navas-Cortés JA, Tena-Sempere M, et al. Intestinal microbiota is influenced by gender and body mass index. PLoS One. 2016;11(5):1–16. doi:10.1371/journal.pone.0154090.
  • Koliada A, Syzenko G, Moseiko V, Budovska L, Puchkov K, Perederiy V, Gavalko Y, Dorofeyev A, Romanenko M, Tkach S, et al. Association between body mass index and Firmicutes/Bacteroidetes ratio in an adult Ukrainian population. BMC Microbiol. 2017;17(1):4–9. doi:10.1186/s12866-017-1027-1.
  • Yun Y, Kim HN, Kim SE, Heo SG, Chang Y, Ryu S, Shin H, Kim H-L. Comparative analysis of gut microbiota associated with body mass index in a large Korean cohort. BMC Microbiol. 2017;17(1):1–9. doi:10.1186/s12866-017-1052-0.
  • Azad MB, Konya T, Persaud RR, Guttman DS, Chari RS, Field CJ, Sears MR, Mandhane PJ, Turvey SE, Subbarao P, et al. Impact of maternal intrapartum antibiotics, method of birth and breastfeeding on gut microbiota during the first year of life: a prospective cohort study. BJOG: Int J Obstet Gy. 2016;123(6):983–993. doi:10.1111/1471-0528.13601.
  • Ringel-Kulka T, Cheng J, Ringel Y, Salojärvi J, Carroll I, Palva A, de Vos WM, Satokari R. Intestinal microbiota in healthy U.S. Young children and adults—a high throughput microarray analysis. PLoS One. 2013;8(5):e64315. doi:10.1371/journal.pone.0064315.
  • Claesson MJ, Cusack S, O’Sullivan O, Greene-Diniz R, De Weerd H, Flannery E, Marchesi JR, Falush D, Dinan T, Fitzgerald G, et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci USA. 2011;108(SUPPL. supplement_1):4586–4591. doi:10.1073/pnas.1000097107.
  • Biagi E, Franceschi C, Rampelli S, Severgnini M, Ostan R, Turroni S, Consolandi C, Quercia S, Scurti M, Monti D, et al. Gut microbiota and extreme longevity. Curr Biol. 2016;26(11):1480–1485. doi:10.1016/j.cub.2016.04.016.
  • Drago L, Toscano M, Rodighiero V, De Vecchi E, Mogna G. Cultivable and pyrosequenced fecal microflora in centenarians and young subjects. J Clin Gastroenterol. 2012;46(SUPPL. 1):81–84. doi:10.1097/MCG.0b013e3182693982.
  • Nishida A, Inoue R, Inatomi O, Bamba S, Naito Y, Andoh A. Gut microbiota in the pathogenesis of inflammatory bowel disease. Clin J Gastroenterol. 2018;11(1):1–10. doi:10.1007/s12328-017-0813-5.
  • Dominguez-Bello MG, Godoy-Vitorino F, Knight R, Blaser MJ. Role of the microbiome in human development. Gut. 2019;68(6):1108–1114. doi:10.1136/gutjnl-2018-317503.
  • Koboziev I, Karlsson F, Grisham MB. Gut-associated lymphoid tissue, T cell trafficking, and chronic intestinal inflammation. Ann N Y Acad Sci. 2010;1207(SUPPL.1):86–93. doi:10.1111/j.1749-6632.2010.05711.x.
  • Agace WW. T-cell recruitment to the intestinal mucosa. Trends Immunol. 2008;29(11):514–522. doi:10.1016/j.it.2008.08.003.
  • Torres J, Hu J, Seki A, Eisele C, Nair N, Huang R, Tarassishin L, Jharap B, Cote-Daigneault J, Mao Q, et al. Infants born to mothers with IBD present with altered gut microbiome that transfers abnormalities of the adaptive immune system to germ-free mice. Gut. 2020;69(1):42–51. doi:10.1136/gutjnl-2018-317855.
  • Kim ES, Tarassishin L, Eisele C, Barre A, Nair N, Rendon A, Hawkins K, Debebe A, White S, Thjømøe A, et al. Longitudinal changes in Fecal calprotectin levels among pregnant women with and without inflammatory bowel disease and their babies. Gastroenterol. 2021;160(4):1118–1130.e3. doi:10.1053/J.GASTRO.2020.11.050.
  • Gevers D, Kugathasan S, Denson LA, Vázquez-Baeza Y, Van Treuren W, Ren B, Schwager E, Knights D, Song S, Yassour M, et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host & Microbe. 2014;15(3):382–392. doi:10.1016/j.chom.2014.02.005.
  • Kansal S, Catto-Smith AG, Boniface K, Thomas S, Cameron DJ, Oliver M, Alex G, Kirkwood C, Wagner J. The microbiome in paediatric Crohn’s disease—a longitudinal, prospective, single-centre study. J Crohns Colitis. 2019;13(8):1044–1054. doi:10.1093/ecco-jcc/jjz016.
  • Takahashi K, Nishida A, Fujimoto T, Fujii M, Shioya M, Imaeda H, Inatomi O, Bamba S, Andoh A, Sugimoto M. Reduced abundance of butyrate-producing bacteria species in the Fecal microbial community in Crohn’s disease. Digestion. 2016;93(1):59–65. doi:10.1159/000441768.
  • Miquel S, Martín R, Rossi O, Bermúdez-Humarán LG, Chatel JM, Sokol H, Thomas M, Wells JM, Langella P. Faecalibacterium prausnitzii and human intestinal health. Curr Opin Microbiol. 2013;16(3):255–261. doi:10.1016/j.mib.2013.06.003.
  • Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermúdez-Humarán LG, Gratadoux JJ, Blugeon S, Bridonneau C, Furet J-P, Corthier G, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A. 2008;105(43):16731–16736. doi:10.1073/pnas.0804812105.
  • Caparrós E, Wiest R, Scharl M, Rogler G, Gutiérrez Casbas A, Yilmaz B, Wawrzyniak M, Francés R. Dysbiotic microbiota interactions in Crohn’s disease. Gut Microbes. 2021;13(1):1–19. doi:10.1080/19490976.2021.1949096.
  • Pascal V, Pozuelo M, Borruel N, Casellas F, Campos D, Santiago A, Martinez X, Varela E, Sarrabayrouse G, Machiels K, et al. A microbial signature for Crohn’s disease. Gut. 2017;66(5):813–822. doi:10.1136/gutjnl-2016-313235.
  • Zhao H, Xu H, Chen S, He J, Zhou Y, Nie Y. Systematic review and meta-analysis of the role of faecalibacterium prausnitzii alteration in inflammatory bowel disease. J Gastroenterol Hepatol. 2021;36(2):320–328. doi:10.1111/jgh.15222.
  • Barnich N, Aguirre JE, Reinecker HC, Xavier R, Podolsky DK. Membrane recruitment of NOD2 in intestinal epithelial cells is essential for nuclear factor-ΚB activation in muramyl dipeptide recognition. J Cell Biol. 2005;170(1):21–26. doi:10.1083/jcb.200502153.
  • Wehkamp J, Stange EF. An update review on the Paneth cell as key to ileal Crohn’s disease. Front Immunol. 2020;11(April). doi:10.3389/fimmu.2020.00646.
  • Ashton JJ, Seaby EG, Beattie RM, Ennis S. NOD2 in Crohn’s disease—unfinished business. J Crohns Colitis. 2023;17(3):450–458. doi:10.1093/ecco-jcc/jjac124.
  • Gao P, Liu H, Huang H, Sun Y, Jia B, Hou B, Zhou X, Strober W, Zhang F. The Crohn disease-associated ATG16L1T300A polymorphism regulates inflammatory responses by modulating TLR- and NLR-mediated signaling. Autophagy. 2022;18(11):2561–2575. doi:10.1080/15548627.2022.2039991.
  • Martinez-Medina M, Aldeguer X, Lopez-Siles M, González-Huix F, López-Oliu C, Dahbi G, Blanco JE, Blanco J, Garcia-Gil JL, Darfeuille-Michaud A. Molecular diversity of Escherichia coli in the human gut: new ecological evidence supporting the role of adherent-invasive E. coli (AIEC) in Crohnʼs disease. Inflamm Bowel Dis. 2009;15(6):872–882. doi:10.1002/ibd.20860.
  • Jiang W, Su J, Zhang X, Cheng X, Zhou J, Shi R, Zhang H. Elevated levels of Th17 cells and Th17-related cytokines are associated with disease activity in patients with inflammatory bowel disease. Inflamm Res. 2014;63(11):943–950. doi:10.1007/s00011-014-0768-7.
  • Mitsuyama K, Niwa M, Takedatsu H, Yamasaki H, Kuwaki K, Yoshioka S, Yamauchi R, Fukunaga S, Torimura T. Antibody markers in the diagnosis of inflammatory bowel disease. World J Gastroenterol. 2016;22(3):1304–1310. doi:10.3748/wjg.v22.i3.1304.
  • Wang JQ, Huang Y. Serological markers of inflammatory bowel disease. World Chinese J Dig. 2013;21(36):4110–4115. doi:10.11569/wcjd.v21.i36.4110.
  • Zimmerman L, Bousvaros A. The pharmacotherapeutic management of pediatric Crohn’s disease. Expert Opin Pharmacother. 2019;20(17):2161–2168. doi:10.1080/14656566.2019.1659778.
  • Akobeng AK. Crohn’s disease: current treatment options. Arch Dis Child. 2008;93(9):787–792. doi:10.1136/adc.2007.128751.
  • Schwermer M, Fetz K, Längler A, Ostermann T, Zuzak TJ. Complementary, alternative, integrative and dietary therapies for children with Crohn’s disease – a systematic review. Complement Ther Med. 2020;52(June):102493. doi:10.1016/j.ctim.2020.102493.
  • Brookes MJ, Green JRB. Maintenance of remission in Crohn’s disease: current and emerging therapeutic options. Drugs. 2004;64(10):1069–1089. doi:10.2165/00003495-200464100-00004.
  • Bradford K, Shih DQ. Optimizing 6-mercaptopurine and azathioprine therapy in the management of inflammatory bowel disease. World J Gastroenterol. 2011;17(37):4166–4173. doi:10.3748/wjg.v17.i37.4166.
  • Dubinsky MC. Azathioprine 6-mercaptopurine in inflammatory bowel disease: pharmacology, efficacy, and safety. Clin Gastroenterol Hepatol. 2004;2(9):731–743. doi:10.1016/S1542-3565(04)00344-1.
  • Cronstein BN. The mechanism of action of methotrexate. Rheum Dis Clin North Am. 1997;23(4):739–755. doi:10.1016/S0889-857X(05)70358-6.
  • Ludvigsson JF. Antibiotic use and inflammatory bowel disease: number needed to harm? Gut. 2023;(0):gutjnl-2023–329575. doi:10.1136/gutjnl-2023-329575.
  • Weisband YL. Association of antibiotic use with durability of biologic agents in inflammatory bowel disease. A Report From The Epi-IIRN. 2023;jjad070(April):1–8.
  • Bogatic D, Bryant RV, Lynch KD, Costello SP. Systematic review: microbial manipulation as therapy for primary sclerosing cholangitis. Aliment Pharmacol Ther. 2023;57(1):23–36. doi:10.1111/apt.17251.
  • Lafferty L, Tuohy M, Carey A, Sugrue S, Hurley M, Hussey S. Outcomes of exclusive enteral nutrition in paediatric Crohn’s disease. Eur J Clin Nutr. 2017;71(2):185–191. doi:10.1038/ejcn.2016.210.
  • Grover Z, Lewindon P. Two-year outcomes after exclusive enteral nutrition induction are superior to corticosteroids in pediatric Crohn’s disease treated early with thiopurines. Dig Dis Sci. 2015;60(10):3069–3074. doi:10.1007/s10620-015-3722-9.
  • Dunn KA, Moore-Connors J, Macintyre B, Stadnyk AW, Thomas NA, Noble A, Mahdi G, Rashid M, Otley AR, Bielawski JP, et al. Early changes in microbial community structure are associated with sustained remission after nutritional treatment of pediatric Crohnʼs disease. Inflamm Bowel Dis. 2016;22(12):2853–2862. doi:10.1097/MIB.0000000000000956.
  • Lv Y, Lou Y, Liu A, Cheng Q, Yang G, Xu C, Luo Y, Lou J, Yu J, Fang Y, et al. The impact of exclusive enteral nutrition on the gut microbiome and bile acid metabolism in pediatric Crohn’s disease. Clin Nutr. 2023;42(2):116–128. doi:10.1016/J.CLNU.2022.11.018.
  • Verburgt CM, Dunn KA, Ghiboub M, Lewis JD, Wine E, Sigall Boneh R, Gerasimidis K, Shamir R, Penny S, Pinto DM, et al. Successful dietary therapy in paediatric Crohn’s disease is associated with shifts in bacterial dysbiosis and inflammatory metabotype towards healthy controls. J Crohns Colitis. 2023;17(1):61–72. doi:10.1093/ecco-jcc/jjac105.
  • Zhuang X, Tian Z, Feng R, Li M, Li T, Zhou G, Qiu Y, Chen B, He Y, Chen M, et al. Fecal microbiota alterations associated with clinical and endoscopic response to infliximab therapy in crohn’s disease. Inflamm Bowel Dis. 2020;26(11):1636–1647. doi:10.1093/ibd/izaa253.
  • Wang A, Zhang Z, Ding Q, Yang Y, Bindelle J, Ran C, Zhou Z. Intestinal cetobacterium and acetate modify glucose homeostasis via parasympathetic activation in zebrafish. Gut Microbes. 2021;13(1):1–15. doi:10.1080/19490976.2021.1900996.
  • Doherty MK, Ding T, Koumpouras C, Telesco SE, Monast C, Das A, Brodmerkel C, Schloss PD. Fecal microbiota signatures are associated with response to ustekinumab therapy among crohn’s disease patients. MBio. 2018;9(2). doi:10.1128/mBio.02120-17.
  • González-Torres L, Moreno-Álvarez A, Fernández-Lorenzo AE, Leis R, Solar-Boga A. The role of partial enteral nutrition for induction of remission in Crohn’s disease: a systematic review of controlled trials. Nutrients. 2022;14(24):5263. doi:10.3390/nu14245263.
  • Yanai H, Levine A, Hirsch A, Boneh RS, Kopylov U, Eran HB, Cohen NA, Ron Y, Goren I, Leibovitzh H, et al. The Crohn’s disease exclusion diet for induction and maintenance of remission in adults with mild-to-moderate Crohn’s disease (CDED-AD): an open-label, pilot, randomised trial. Lancet Gastroenterol Hepatol. 2022;7(1):49–59. doi:10.1016/S2468-1253(21)00299-5.
  • Hart L, Verburgt CM, Wine E, Zachos M, Poppen A, Chavannes M, Van Limbergen J, Pai N. Nutritional therapies and their influence on the intestinal microbiome in pediatric inflammatory bowel disease. Nutr. 2022;14(1):4–22. doi:10.3390/nu14010004.
  • Ding Z, Ninan K, Johnston BC, Moayyedi P, Sherlock M, Zachos M. Microbiota signatures and mucosal healing in the use of enteral nutrition therapy versus corticosteroids for the treatment of children with Crohn’s disease: a systematic review and meta-analysis. Br J Nutr. 2023;16–19. doi:10.1017/S0007114523000405.
  • Melton SL, Taylor KM, Gibson PR, Halmos EP. Review article: mechanisms underlying the effectiveness of exclusive enteral nutrition in Crohn’s disease. Aliment Pharmacol Ther. 2023 October;57(9):932–947. doi:10.1111/apt.17451.
  • Gkikas K, Logan M, Nichols B, Ijaz UZ, Clark CM, Svolos V, Gervais L, Duncan H, Garrick V, Curtis L, et al. Dietary triggers of gut inflammation following exclusive enteral nutrition in children with Crohn’s disease: a pilot study. BMC Gastroenterol. 2021;21(1):1–11. doi:10.1186/s12876-021-02029-4.
  • Gerasimidis K, Gkikas K, Stewart C, Neelis E, Svolos V. Microbiome and paediatric gut diseases. Arch Dis Child. 2022;107(9):784–789. doi:10.1136/archdischild-2020-320875.
  • Pigneur B, Lepage P, Mondot S, Schmitz J, Goulet O, Doré J, Ruemmele FM. Mucosal healing and bacterial composition in response to enteral nutrition vs steroid-based induction therapy—A randomised prospective clinical trial in children with Crohn’s disease. J Crohn’s Colitis. 2019;13(7):846–855. doi:10.1093/ecco-jcc/jjy207.
  • Soo J, Malik BA, Turner JM, Persad R, Wine E, Siminoski K, Huynh HQ. Use of exclusive enteral nutrition is just as effective as corticosteroids in newly diagnosed pediatric Crohn’s disease. Dig Dis Sci. 2013;58(12):3584–3591. doi:10.1007/s10620-013-2855-y.
  • Narula N, Dhillon A, Zhang D, Sherlock ME, Tondeur M, Zachos M. Enteral nutritional therapy for induction of remission in Crohn’s disease. Cochrane Database Syst Rev. 2018;2018(4). doi:10.1002/14651858.CD000542.pub3.
  • Morain CO, Segal AW, Levi AJ. Elemental diet as primary treatment of acute Crohn’s disease: a controlled trial. Br Med J. 1984;288(6434):1859–1862. doi:10.1136/bmj.288.6434.1859.
  • Okada M, Yao T, Yamamoto T, Takenaka K, Imamura K, Maeda KF, Fujita K. Controlled trial comparing an elemental diet with prednisolone in the treatment of active Crohn’s disease. Hepatogastroenterol. 1990;37:72–80.
  • Xiang L, Ding X, Li Q, Wu X, Dai M, Long C, He Z, Cui B, Zhang F. Efficacy of faecal microbiota transplantation in Crohn’s disease: a new target treatment? Microb Biotechnol. 2020;13(3):760–769. doi:10.1111/1751-7915.13536.
  • Jarmo O, Veli-Jukka A, Eero M. Treatment of clostridioides (clostridium) difficile infection. Ann Med. 2020;52(1–2):12–20. doi:10.1080/07853890.2019.1701703.
  • Li P, Zhang T, Xiao Y, Tian L, Cui B, Ji G, Liu YY, Zhang F. Timing for the second fecal microbiota transplantation to maintain the long-term benefit from the first treatment for Crohn’s disease. Appl Microbiol Biotechnol. 2019;103(1):349–360. doi:10.1007/s00253-018-9447-x.
  • Vaughn BP, Vatanen T, Allegretti JR, Bai A, Xavier RJ, Korzenik J, Gevers D, Ting A, Robson SC, Moss AC. Increased intestinal microbial diversity following Fecal microbiota transplant for active Crohnʼs disease. Inflamm Bowel Dis. 2016;22(9):2182–2190. doi:10.1097/MIB.0000000000000893.
  • Yang Z, Bu C, Yuan W, Shen Z, Quan Y, Wu S, Zhu C, Wang X. Fecal microbiota transplant via endoscopic delivering through small intestine and colon: no difference for Crohn’s disease. Dig Dis Sci. 2020;65(1):150–157. doi:10.1007/s10620-019-05751-y.
  • Suskind DL, Brittnacher MJ, Wahbeh G, Shaffer ML, Hayden HS, Qin X, Singh N, Damman CJ, Hager KR, Nielson H, et al. Fecal microbial transplant effect on clinical outcomes and Fecal microbiome in active Crohnʼs disease. Inflamm Bowel Dis. 2015;21(3):556–563. doi:10.1097/MIB.0000000000000307.
  • Wang H, Cui B, Li Q, Ding X, Li P, Zhang T, Yang X, Ji G, Zhang F. The safety of fecal microbiota transplantation for Crohn’s disease: findings from a long-term study. Adv Ther. 2018;35(11):1935–1944. doi:10.1007/s12325-018-0800-3.
  • Pai N, Popov J, Hill L, Hartung E. Protocol for a double-blind, randomised, placebo-controlled pilot study for assessing the feasibility and efficacy of faecal microbiota transplant in a paediatric Crohn’s disease population: PediCRaFT trial. BMJ Open. 2019;9(11):1–11. doi:10.1136/bmjopen-2019-030120.
  • Aardoom MA, Veereman G, de Ridder L. A review on the use of anti-TNF in children and adolescents with inflammatory bowel disease. Int J Mol Sci. 2019;20(10). doi:10.3390/ijms20102529.
  • Balzola F, Cullen G, Ho GT, Russell RK, Wehkamp J. Ustekinumab induction and maintenance therapy in refractory Crohn’s disease: commentary. Inflamm Bowel Dis Monit. 2012;13(2):69. doi:10.1056/NEJMoa1203572.
  • Balzola F, Cullen G, Ho GT, Russell R. Vedolizumab as induction and maintenance therapy for Crohn’s disease: commentary. Inflamm Bowel Dis Monit. 2014;14(2):55–56. doi:10.1056/NEJMoa1215739.
  • Jongsma MME, Aardoom MA, Cozijnsen MA, Van Pieterson M, De Meij T, Groeneweg M, Norbruis OF, Wolters VM, van Wering HM, Hojsak I, et al. First-line treatment with infliximab versus conventional treatment in children with newly diagnosed moderate-to-severe Crohn’s disease: an open-label multicentre randomised controlled trial. Gut. 2022;71(1):34–42. doi:10.1136/gutjnl-2020-322339.
  • Parigi TL, Iacucci M, Ghosh S. Blockade of IL-23: What is in the pipeline? J Crohn’s Colitis. 2022;16(Supplement_2):ii64–ii72. doi:10.1093/ecco-jcc/jjab185.
  • Sandborn WJ, Rebuck R, Wang Y, Zou B, Adedokun OJ, Gasink C, Sands BE, Hanauer SB, Targan S, Ghosh S, et al. Five-year efficacy and safety of ustekinumab treatment in Crohn’s disease: The IM-UNITI trial. Clin Gastroenterol Hepatol. 2022;20(3):578–590.e4. doi:10.1016/j.cgh.2021.02.025.
  • D’Haens G, Panaccione R, Baert F, Bossuyt P, Colombel JF, Danese S, Dubinsky M, Feagan BG, Hisamatsu T, Lim A, et al. Risankizumab as induction therapy for Crohn’s disease: results from the phase 3 ADVANCE and MOTIVATE induction trials. Lancet. 2022;399(10340):2015–2030. doi:10.1016/S0140-6736(22)00467-6.
  • Ferrante M, Panaccione R, Baert F, Bossuyt P, Colombel JF, Danese S, Dubinsky M, Feagan BG, Hisamatsu T, Lim A, et al. Risankizumab as maintenance therapy for moderately to severely active Crohn’s disease: results from the multicentre, randomised, double-blind, placebo-controlled, withdrawal phase 3 FORTIFY maintenance trial. Lancet. 2022;399(10340):2031–2046. doi:10.1016/S0140-6736(22)00466-4.
  • Thia KT, Mahadevan U, Feagan BG, Wong C, Cockeram A, Bitton A, Bernstein CN, Sandborn WJ. Ciprofloxacin or metronidazole for the treatment of perianal fistulas in patients with Crohnʼs disease: a randomized, double-blind, placebo-controlled pilot study. Inflamm Bowel Dis. 2009;15(1):17–24. doi:10.1002/ibd.20608.
  • Breton J, Tanes C, Tu V, Albenberg L, Rowley S, Devas N, Hwang R, Kachelries K, Wu GD, Baldassano RN, et al. A microbial signature for paediatric perianal Crohn’s disease. J Crohns Colitis. 2022;16(8):1281–1292. doi:10.1093/ecco-jcc/jjac032.
  • Tabibian JH, Weeding E, Jorgensen RA, Petz JL, Keach JC, Talwalkar JA, Lindor KD. Randomised clinical trial: vancomycin or metronidazole in patients with primary sclerosing cholangitis - a pilot study. Aliment Pharmacol Ther. 2013;37(6):604–612. doi:10.1111/apt.12232.
  • Nitzan O, Elias M, Peretz A, Saliba W. Role of antibiotics for treatment of inflammatory bowel disease. World J Gastroenterol. 2016;22(3):1078–1087. doi:10.3748/wjg.v22.i3.1078.
  • Wise PE, Schwartz DA. Management of perianal Crohn’s disease. Clin Gastroenterol Hepatol. 2006;4(4):426–430. doi:10.1016/j.cgh.2006.02.001.
  • Elliott PR, Moore GTC, Bell SJ, Connell WR. Severe recurrent Crohn’s disease of the ileocolonic anastomosis disappearing completely with antibacterial therapy [2]. Gut. 2005;54(12):1818–1819. doi:10.1136/gut.2005.078568.
  • Levine A, Turner D. Combined azithromycin and metronidazole therapy is effective in inducing remission in pediatric Crohn’s disease. J Crohn’s Colitis. 2011;5(3):222–226. doi:10.1016/j.crohns.2011.01.006.
  • Strong SA. Perianal Crohn’s disease. Semin Pediatr Surg. 2007;16(3):185–193. doi:10.1053/j.sempedsurg.2007.04.007.
  • Park SK, Kim KJ, Lee SO, Yang DH, Jung KW, Duk Ye B, Byeon JS, Myung SJ, Yang SK, Kim JH, et al. Ciprofloxacin usage and bacterial resistance patterns in Crohn’s disease patients with abscesses. J Clin Gastroenterol. 2014;48(8):703–707. doi:10.1097/MCG.0000000000000024.
  • Rahimpour S, Nasiri-Toosi M, Khalili H, Daryani NE, Taromlou MKN, Azizi Z. A triple blinded, randomized, placebo-controlled clinical trial to evaluate the efficacy and safety of oral vancomycin in primary sclerosing cholangitis: a pilot study. J Gastrointest Liver Dis. 2016;25(4):457–464. doi:10.15403/jgld.2014.1121.254.rah.
  • Chandok N, Hirschfield GM. Management of primary sclerosing cholangitis: conventions and controversies. Can J Gastroenterol. 2012;26(5):261–268. doi:10.1155/2012/426430.
  • Kucharska M, Daniluk U, Kwiatek-Średzińska KA, Wasilewska N, Filimoniuk A, Jakimiec P, Zdanowicz K, Lebensztejn D. Hepatobiliary manifestations of inflammatory bowel disease in children. Clin Exp Hepatol. 2019;5(3):203–209. doi:10.5114/ceh.2019.87632.
  • Ni Mhuircheartaigh JM, Lee KS, Curry MP, Pedrosa I, Mortele KJ. Early peribiliary hyperenhancement on MRI in patients with primary sclerosing cholangitis: significance and Association with the mayo risk score. Abdom Radiol. 2017;42(1):152–158. doi:10.1007/s00261-016-0847-z.
  • Khoshpouri P, Ameli S, Ghasabeh MA, Pandey A, Zarghampour M, Varzaneh FN, Jacob A, Pandey P, Luo Y, Kamel IR, et al. Correlation between quantitative liver and spleen volumes and disease severity in primary sclerosing cholangitis as determined by mayo risk score. Eur J Radiol. 2018;108:254–260. doi:10.1016/J.EJRAD.2018.10.006.
  • Turner D, Bishai J, Reshef L, Abitbol G, Focht G, Marcus D, Ledder O, Lev-Tzion R, Orlanski-Meyer E, Yerushalmi B, et al. Antibiotic cocktail for pediatric acute severe colitis and the microbiome: the PRASCO randomized controlled trial. Inflamm Bowel Dis. 2020;26(11):1733–1742. doi:10.1093/ibd/izz298.
  • Guslandi M. Rifaximin in the treatment of inflammatory bowel disease. World J Gastroenterol. 2011;17(42):4643–4646. doi:10.3748/wjg.v17.i42.4643.
  • Muniyappa P, Gulati R, Mohr F, Hupertz V. Use and safety of rifaximin in children with inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2009;49(4):400–404. doi:10.1097/MPG.0b013e3181a0d269.
  • Lopetuso LR, Napoli M, Rizzatti G, Gasbarrini A. The intriguing role of rifaximin in gut barrier chronic inflammation and in the treatment of Crohn’s disease. Expert Opin Investig Drugs. 2018;27(6):543–551. doi:10.1080/13543784.2018.1483333.
  • Maccaferri S, Vitali B, Klinder A, Kolida S, Ndagijimana M, Laghi L, Calanni F, Brigidi P, Gibson GR, Costabile A, et al. Rifaximin modulates the colonic microbiota of patients with Crohn’s disease: an in vitro approach using a continuous culture colonic model system. J Antimicrob Chemother. 2010;65(12):2556–2565. doi:10.1093/jac/dkq345.
  • Khan KJ, Ullman TA, Ford AC, Abreu MT, Abadir A, Marshall JK, Talley NJ, Moayyedi P. Antibiotic therapy in inflammatory bowel disease: a systematic review and meta-analysis. Am J Gastroenterol. 2011;106(4):661–673. doi:10.1038/ajg.2011.72.
  • Mishima Y, Sartor RB. Manipulating resident microbiota to enhance regulatory immune function to treat inflammatory bowel diseases. J Gastroenterol. 2020;55(1):4–14. doi:10.1007/s00535-019-01618-1.
  • Eindor-Abarbanel A, Healey GR, Jacobson K. Therapeutic advances in gut microbiome modulation in patients with inflammatory bowel disease from pediatrics to adulthood. Int J Mol Sci. 2021;22(22). doi:10.3390/ijms222212506.
  • Assar S, Nosratabadi R, Khorramdel Azad H, Masoumi J, Mohamadi M, Hassanshahi G. A review of immunomodulatory effects of fluoroquinolones. Immunol Invest. 2021;50(8):1007–1026. doi:10.1080/08820139.2020.1797778.
  • Sprockett D, Fischer N, Boneh RS, Turner D, Kierkus J, Sladek M, Escher JC, Wine E, Yerushalmi B, Dias JA, et al. Treatment-specific composition of the gut microbiota is associated with disease remission in a pediatric crohn’s disease cohort. Inflamm Bowel Dis. 2019;25(12):1927–1938. doi:10.1093/ibd/izz130.