2,320
Views
2
CrossRef citations to date
0
Altmetric
Review

Targeting microbial quorum sensing: the next frontier to hinder bacterial driven gastrointestinal infections

&
Article: 2252780 | Received 04 Jul 2023, Accepted 24 Aug 2023, Published online: 07 Sep 2023

References

  • Rooks MG, Veiga P, Wardwell-Scott LH, Tickle T, Segata N, Michaud M, Gallini CA, Beal C, van Hylckama-Vlieg JE, Ballal SA, et al. Gut microbiome composition and function in experimental colitis during active disease and treatment-induced remission. ISME J. 2014;8(7):1403–22. doi:10.1038/ismej.2014.3.
  • Gordon JI, Klaenhammer TR. A rendezvous with our microbes. PNAS. 2011;108:4513–4515. doi:10.1073/pnas.1101958108.
  • Kumar V, Rawat J. Quorum sensing: the microbial linguistic. In: Recent Advancements in Microbial Diversity. Academic Press; 2020 p. 233–250. doi:10.1016/B978-0-12-821265-3.00010-4.
  • Uhlig F, Grundy L, Garcia-Caraballo S, Brierley SM, Foster SJ, Grundy D. Identification of a quorum sensing-dependent communication pathway mediating bacteria-gut-brain cross talk. iScience. 2020;23:101695. doi:10.1016/j.isci.2020.101695.
  • Wu L, Luo Y. Bacterial quorum-sensing systems and their role in intestinal bacteria-host crosstalk. Front Microbiol. 2021;12:611413. doi:10.3389/fmicb.2021.611413.
  • Wu S, Xu C, Liu J, Liu C, Qiao J. Vertical and horizontal quorum-sensing-based multicellular communications. Trends Microbiol. 2021;29(12):1130–1142. doi:10.1016/j.tim.2021.04.006.
  • Cvitkovitch DG, Li YH, Ellen RP. Quorum sensing and biofilm formation in streptococcal infections. J Clin Invest. 2003;112(11):1626–1632. doi:10.1172/JCI200320430.
  • Whiteley M, Diggle SP, Greenberg EP. Progress in and promise of bacterial quorum sensing research. Nature. 2017;551(7680):313–320. doi:10.1038/nature24624.
  • Frias J, Olle E, Alsina M, O’Brien AD. Periodontal pathogens produce quorum sensing signal molecules. Infect Immun. 2001;69(5):3431–3434. doi:10.1128/IAI.69.5.3431-3434.2001.
  • Rader BA, Campagna SR, Semmelhack MF, Bassler BL, Guillemin K. The quorum-sensing molecule autoinducer 2 regulates motility and flagellar morphogenesis in Helicobacter pylori. J Bacteriol. 2007;189(17):6109–6117. doi:10.1128/JB.00246-07.
  • Walters M, Sperandio V. Quorum sensing in Escherichia coli and Salmonella. Int J Med Microbiol. 2006;296(2–3):125–131. doi:10.1016/j.ijmm.2006.01.041.
  • Bearson BL, Bearson SM. The role of the QseC quorum-sensing sensor kinase in colonization and norepinephrine-enhanced motility of Salmonella enterica serovar typhimurium. Microb Pathog. 2008;44(4):271–278. doi:10.1016/j.micpath.2007.10.001.
  • Sturme MH, Francke C, Siezen RJ, de Vos WM, Kleerebezem M. Making sense of quorum sensing in lactobacilli: a special focus on Lactobacillus plantarum WCFS1. Microbiol (Russ Acad Sci). 2007;153:3939–3947. doi:10.1099/mic.0.2007/012831-0.
  • Miller MB, Bassler BL. Quorum sensing in bacteria. Annu Rev Microbiol. 2001;55(1):165–199. doi:10.1146/annurev.micro.55.1.165.
  • Mukherjee S, Bassler BL. Bacterial quorum sensing in complex and dynamically changing environments. Nat Rev Microbiol. 2019;17(6):371–382. doi:10.1038/s41579-019-0186-5.
  • Ng W-L, Bassler BL. Bacterial quorum-sensing network architectures. Annu Rev Genet. 2009;43(1):197. doi:10.1146/annurev-genet-102108-134304.
  • Waters CM, Bassler BL. Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol. 2005;21(1):319–346. doi:10.1146/annurev.cellbio.21.012704.131001.
  • Decho AW, Frey RL, Ferry JL. Chemical challenges to bacterial AHL signaling in the environment. Chem Rev. 2011;111(1):86–99. doi:10.1021/cr100311q.
  • Nealson KH, Platt T, Hastings JW. Cellular control of the synthesis and activity of the bacterial luminescent system. J Bacteriol. 1970;104(1):313–322. doi:10.1128/jb.104.1.313-322.1970.
  • Brint JM, Ohman DE. Synthesis of multiple exoproducts in Pseudomonas aeruginosa is under the control of RhlR-RhlI, another set of regulators in strain PAO1 with homology to the autoinducer-responsive LuxR-LuxI family. J Bacteriol. 1995;177(24):7155–7163. doi:10.1128/jb.177.24.7155-7163.1995.
  • Atkinson S, Chang CY, Sockett RE, Camara M, Williams P. Quorum sensing in Yersinia enterocolitica controls swimming and swarming motility. J Bacteriol. 2006;188(4):1451–1461. doi:10.1128/JB.188.4.1451-1461.2006.
  • Lewenza S, Conway B, Greenberg EP, Sokol PA. Quorum sensing in Burkholderia cepacia: identification of the LuxRI homologs CepRI. J Bacteriol. 1999;181(3):748–756. doi:10.1128/JB.181.3.748-756.1999.
  • Dyszel JL, Smith JN, Lucas DE, Soares JA, Swearingen MC, Vross MA, Young GM, Ahmer BM. Salmonella enterica serovar typhimurium can detect acyl homoserine lactone production by Yersinia enterocolitica in mice. J Bacteriol Parasitol. 2010;192(1):29–37. doi:10.1128/JB.01139-09.
  • Papenfort K, Bassler BL. Quorum sensing signal–response systems in Gram-negative bacteria. Nat Rev Microbiol. 2016;14(9):576. doi:10.1038/nrmicro.2016.89.
  • Huber B, Riedel K, Hentzer M, Heydorn A, Gotschlich A, Givskov M, Molin S, Eberl L. The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility. Microbiology. 2001;147(9):2517–2528. doi:10.1099/00221287-147-9-2517.
  • Erickson DL, Endersby R, Kirkham A, Stuber K, Vollman DD, Rabin HR, Mitchell I, Storey DG. Pseudomonas aeruginosa quorum-sensing systems may control virulence factor expression in the lungs of patients with cystic fibrosis. Infect Immun. 2002;70(4):1783–1790. doi:10.1128/IAI.70.4.1783-1790.2002.
  • Kumari A, Pasini P, Daunert S. Detection of bacterial quorum sensing N-acyl homoserine lactones in clinical samples. Anal Bioanal Chem. 2008;391(5):1619–1627. doi:10.1007/s00216-008-2002-3.
  • Buch PJ, Chai Y, Goluch ED. Bacterial chatter in chronic wound infections. Wound Repair Regen. 2021;29(1):106–116. doi:10.1111/wrr.12867.
  • Kumari A, Pasini P, Deo SK, Flomenhoft D, Shashidhar H, Daunert S. Biosensing systems for the detection of bacterial quorum signaling molecules. Anal Chem. 2006;78(22):7603–7609. doi:10.1021/ac061421n.
  • Landman C, Grill JP, Mallet JM, Marteau P, Humbert L, Le Balc’h E, Maubert MA, Perez K, Chaara W, Brot L, et al. Inter-kingdom effect on epithelial cells of the N-acyl homoserine lactone 3-oxo-C12: 2, a major quorum-sensing molecule from gut microbiota. PLoS One. 2018;13(8):e0202587. doi:10.1371/journal.pone.0202587.
  • Hudaiberdiev S, Choudhary KS, Vera Alvarez R, Gelencsér Z, Ligeti B, Lamba D, Pongor S. Census of solo LuxR genes in prokaryotic genomes. Front Cell Infect Microbiol. 2015;5:20. doi:10.3389/fcimb.2015.00020.
  • Grellier N, Suzuki MT, Brot L, Rodrigues AMS, Humbert L, Escoubeyrou K, Rainteau D, Grill JP, Lami R, Seksik P. Impact of IBD-Associated dysbiosis on bacterial quorum sensing mediated by acyl-homoserine lactone in human gut microbiota. Int J Mol Sci. 2022;23(23):23. doi:10.3390/ijms232315404.
  • Hughes DT, Terekhova DA, Liou L, Hovde CJ, Sahl JW, Patankar AV, Gonzalez JE, Edrington TS, Rasko DA, Sperandio V. Chemical sensing in mammalian host–bacterial commensal associations. PNAS. 2010;107(21):9831–9836. doi:10.1073/pnas.1002551107.
  • Yan Y, Nguyen LH, Franzosa EA, Huttenhower C. Strain-level epidemiology of microbial communities and the human microbiome. Genome Med. 2020;12(1):71. doi:10.1186/s13073-020-00765-y.
  • Pereira CS, Thompson JA, Xavier KB. AI-2-mediated signalling in bacteria. FEMS Microbiol Rev. 2013;37(2):156–181. doi:10.1111/j.1574-6976.2012.00345.x.
  • Sperandio V, Torres AG, Jarvis B, Nataro JP, Kaper JB. Bacteria–host communication: the language of hormones. PNAS. 2003;100(15):8951–8956. doi:10.1073/pnas.1537100100.
  • Sekirov I, Tam NM, Jogova M, Robertson ML, Li Y, Lupp C, Finlay BB. Antibiotic-induced perturbations of the intestinal microbiota alter host susceptibility to enteric infection. Infect Immun. 2008;76(10):4726–4736. doi:10.1128/IAI.00319-08.
  • Thompson JA, Oliveira RA, Djukovic A, Ubeda C, Xavier KB. Manipulation of the quorum sensing signal AI-2 affects the antibiotic-treated gut microbiota. Cell Rep. 2015;10(11):1861–1871. doi:10.1016/j.celrep.2015.02.049.
  • Hsiao A, Ahmed AM, Subramanian S, Griffin NW, Drewry LL, Petri WA Jr., Haque R, Ahmed T, Gordon JI. Members of the human gut microbiota involved in recovery from Vibrio cholerae infection. Nature. 2014;515(7527):423–426. doi:10.1038/nature13738.
  • Zschiedrich CP, Keidel V, Szurmant H. Molecular mechanisms of two-component signal transduction. J Mol Biol. 2016;428(19):3752–3775. doi:10.1016/j.jmb.2016.08.003.
  • Lyon GJ, Wright JS, Muir TW, Novick RP. Key determinants of receptor activation in the agr autoinducing peptides of Staphylococcus aureus. Biochemistry. 2002;41(31):10095–10104. doi:10.1021/bi026049u.
  • Geisinger E, Muir TW, Novick RP. Agr receptor mutants reveal distinct modes of inhibition by staphylococcal autoinducing peptides. PNAS. 2009;106(4):1216–1221. doi:10.1073/pnas.0807760106.
  • Brown MM, Kwiecinski JM, Cruz LM, Shahbandi A, Todd DA, Cech NB, Horswill AR. Novel peptide from commensal Staphylococcus simulans blocks methicillin-resistant Staphylococcus aureus quorum sensing and protects host skin from damage. Antimicrob Agents Chemother. 2020;64(6):64. doi:10.1128/AAC.00172-20.
  • Atkinson S, Williams P. Quorum sensing and social networking in the microbial world. J R Soc Interface. 2009;6(40):959–978. doi:10.1098/rsif.2009.0203.
  • Kim CS, Gatsios A, Cuesta S, Lam YC, Wei Z, Chen H, Russell RM, Shine EE, Wang R, Wyche TP. Characterization of autoinducer-3 structure and biosynthesis in E. coli. ACS Cent Sci. 2020;6(2):197–206. doi:10.1021/acscentsci.9b01076.
  • Clarke MB, Hughes DT, Zhu C, Boedeker EC, Sperandio V. The QseC sensor kinase: a bacterial adrenergic receptor. PNAS. 2006;103(27):10420–10425. doi:10.1073/pnas.0604343103.
  • Lustri BC, Sperandio V, Moreira CG, Andrews-Polymenis HL. Bacterial chat: intestinal metabolites and signals in host-microbiota-pathogen interactions. Infect Immun. 2017;85(12). doi:10.1128/IAI.00476-17.
  • Nguyen YN, Sheng H, Dakarapu R, Falck JR, Hovde CJ, Sperandio VJI, Bäumler AJ. The acyl-homoserine lactone synthase YenI from Yersinia enterocolitica modulates virulence gene expression in enterohemorrhagic Escherichia coli O157: H7. Infect Immun. 2013;81(81):4192–4199. doi:10.1128/IAI.00889-13.
  • Smith RS, Harris SG, Phipps R, Iglewski B. The Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl) homoserine lactone contributes to virulence and induces inflammation in vivo. J Bacteriol. 2002;184(4):1132–1139. doi:10.1128/jb.184.4.1132-1139.2002.
  • Ritchie AJ, Yam AO, Tanabe KM, Rice SA, Cooley MA. Modification of in vivo and in vitro T- and B-Cell-mediated immune responses by the Pseudomonas aeruginosa quorum-sensing molecule N -(3-oxododecanoyl)- l -homoserine lactone. Infect Immun. 2003;71(8):4421–4431. doi:10.1128/IAI.71.8.4421-4431.2003.
  • Chhabra SR, Harty C, Hooi DS, Daykin M, Williams P, Telford G, Pritchard DI, Bycroft BW. Synthetic analogues of the bacterial signal (quorum sensing) molecule N-(3-oxododecanoyl)-L-homoserine lactone as immune modulators. J Med Chem. 2003;46(1):97–104. doi:10.1021/jm020909n.
  • Kravchenko Kvv, GF MJ, Scott DA, Katz AZ, Grauer DC, Lehmann M, Meijler MM, Janda KD, Ulevitch R, Ulevitch RJ. Modulation of gene expression via disruption of NF-κB signaling by a bacterial small molecule. Sci. 2008;321(5886):259–263. doi:10.1126/science.1156499.
  • Song D, Meng J, Cheng J, Fan Z, Chen P, Ruan H, Tu Z, Kang N, Li N, Xu Y. Pseudomonas aeruginosa quorum-sensing metabolite induces host immune cell death through cell surface lipid domain dissolution. Nature Microbiol. 2019;4(1):97–111. doi:10.1038/s41564-018-0290-8.
  • Zargar A, Quan DN, Carter KK, Guo M, Sintim HO, Payne GF, Bentley WE, Rubin EJ. Bacterial secretions of nonpathogenic Escherichia coli elicit inflammatory pathways: a closer investigation of interkingdom signaling. MBio. 2015;6(2):e00025–15. doi:10.1128/mBio.00025-15.
  • Wu J, Li K, Peng W, Li H, Li Q, Wang X, Peng Y, Tang X, Fu X. Autoinducer-2 of Fusobacterium nucleatum promotes macrophage M1 polarization via TNFSF9/IL-1β signaling. Int Immunopharmacol. 2019;74:105724–. doi:10.1016/j.intimp.2019.105724.
  • Wen Y, Huang H, Tang T, Yang H, Wang X, Huang X, Gong Y, Zhang X, She F. AI-2 represses CagA expression and bacterial adhesion, attenuating the Helicobacter pylori -induced inflammatory response of gastric epithelial cells. Helicobacter. 2021;26(2):e12778. doi:10.1111/hel.12778.
  • Wynendaele E, Verbeke F, D’Hondt M, Hendrix A, Van De Wiele C, Burvenich C, Peremans K, De Wever O, Bracke M, De Spiegeleer B. Crosstalk between the microbiome and cancer cells by quorum sensing peptides. Peptides. 2015;64:40–48. doi:10.1016/j.peptides.2014.12.009.
  • Debunne N, De Spiegeleer A, Depuydt D, Janssens Y, Descamps A, Wynendaele E, De Spiegeleer B. Influence of blood collection mthods and long-term plasma storage on quorum-sensing peptide stability. ACS Omega. 2020;5(26):16120–16127. doi:10.1021/acsomega.0c01723.
  • Wynendaele E, Verbeke F, Stalmans S, Gevaert B, Janssens Y, Van De Wiele C, Peremans K, Burvenich C, De Spiegeleer B, Tharakan B. Quorum sensing peptides selectively penetrate the blood-brain barrier. PLoS One. 2015;10(11):e0142071. doi:10.1371/journal.pone.0142071.
  • Debunne N, Wynendaele E, Janssens Y, De Spiegeleer A, Verbeke F, Tack L, Van Welden S, Goossens E, Knappe D, Hoffmann R, et al. The quorum sensing peptide Entf* promotes colorectal cancer metastasis in mice: a new factor in the microbiom-host interaction. BMC Biol. 2020;20(1):1–16. doi:10.1186/s12915-022-01317-z.
  • Ismail AS, Valastyan JS, Bassler BL. A host-produced autoinducer-2 mimic activates bacterial quorum sensing. Cell Host & Microbe. 2016;19(4):470–480. doi:10.1016/j.chom.2016.02.020.
  • Zaborina O, Lepine F, Xiao G, Valuckaite V, Chen Y, Li T, Ciancio M, Zaborin A, Petroff E, Turner JR, et al. Dynorphin activates quorum sensing quinolone signaling in Pseudomonas aeruginosa. PLoS Path. 2007;3(3):e35. doi:10.1371/journal.ppat.0030035.
  • Khersonsky O, Tawfik DS. Structure−reactivity studies of serum paraoxonase PON1 suggest that its native activity is lactonase. Biochemistry. 2005;44(16):6371–6382. doi:10.1021/bi047440d.
  • Draganov DI, Teiber JF, Speelman A, Osawa Y, Sunahara R, La Du BN. Human paraoxonases (PON1, PON2, and PON3) are lactonases with overlapping and distinct substrate specificities. J Lipid Res. 2005;46(6):1239–1247. doi:10.1194/jlr.M400511-JLR200.
  • Hughes DT, Sperandio V. Inter-kingdom signalling: communication between bacteria and their hosts. Nat Rev Microbiol. 2008;6(2):111–120. doi:10.1038/nrmicro1836.
  • Skindersoe ME, Zeuthen LH, Brix S, Fink LN, Lazenby J, Whittall C, Williams P, Diggle SP, Froekiaer H, Cooley M. Pseudomonas aeruginosa quorum-sensing signal molecules interfere with dendritic cell-induced T-cell proliferation. FEMS Immunol Med Microbiol. 2009;55(3):335–345. doi:10.1111/j.1574-695X.2008.00533.x.
  • Jahoor A, Patel R, Bryan A, Do C, Krier J, Watters C, Wahli W, Li G, Williams SC, Rumbaugh KP. Peroxisome proliferator-activated receptors mediate host cell proinflammatory responses to Pseudomonas aeruginosa autoinducer. J Bacteriol. 2008;190(13):4408–4415. doi:10.1128/JB.01444-07.
  • Moura-Alves P, Puyskens A, Stinn A, Klemm M, Guhlich-Bornhof U, Dorhoi A, Furkert J, Kreuchwig A, Protze J, Lozza L, et al. Host monitoring of quorum sensing during Pseudomonas aeruginosa infection. Science. 2019;366(6472). doi:10.1126/science.aaw1629.
  • Wu J, Wang Y, Jiang Z. Immune induction identified by TMT proteomics analysis in Fusobacterium nucleatum autoinducer-2 treated macrophages. Expert Rev Proteomics. 2020;17(2):175–185. doi:10.1080/14789450.2020.1738223.
  • Scheres N, Lamont RJ, Crielaard W, Krom BP. LuxS signaling in Porphyromonas gingivalis-host interactions. Anaerobe. 2015;35:3–9. doi:10.1016/j.anaerobe.2014.11.011.
  • Li Q, Peng W, Wu J, Wang X, Ren Y, Li H, Peng Y, Tang X, Fu X. Autoinducer-2 of gut microbiota, a potential novel marker for human colorectal cancer, is associated with the activation of TNFSF9 signaling in macrophages. Oncoimmunology. 2019;8(10):e1626192. doi:10.1080/2162402X.2019.1626192.
  • Yang F, Wang L-H, Wang J, Dong Y-H, Hu JY, Zhang L-H. Quorum quenching enzyme activity is widely conserved in the sera of mammalian species. FEBS Lett. 2005;579(17):3713–3717. doi:10.1016/j.febslet.2005.05.060.
  • Chun CK, Ozer EA, Welsh MJ, Zabner J, Greenberg EP. Inactivation of a Pseudomonas aeruginosa quorum-sensing signal by human airway epithelia. PNAS. 2004;101(10):3587–3590. doi:10.1073/pnas.0308750101.
  • Stoltz DA, Ozer EA, Taft PJ, Barry M, Liu L, Kiss PJ, Moninger TO, Parsek MR, Zabner J. Drosophila are protected from Pseudomonas aeruginosa lethality by transgenic expression of paraoxonase-1. J Clin Invest. 2008;118(9):3123–3131. doi:10.1172/JCI35147.
  • Pietschke C, Treitz C, Foret S, Schultze A, Kunzel S, Tholey A, Bosch TCG, Fraune S. Host modification of a bacterial quorum-sensing signal induces a phenotypic switch in bacterial symbionts. PNAS. 2017;114(40):E8488–E97. doi:10.1073/pnas.1706879114.
  • Eisenhofer G, Åneman A, Friberg P, Hooper D, Fåndriks L, Lonroth H, Hunyady B, Mezey E. Substantial production of dopamine in the human gastrointestinal tract. J Clin Endocrinol Metab. 1997;82(11):3864–3871. doi:10.1210/jcem.82.11.4339.
  • Asano Y, Hiramoto T, Nishino R, Aiba Y, Kimura T, Yoshihara K, Koga Y, Sudo N. Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice. Am J Physiol-Gastr L. 2012;303(11):G1288–G95. doi:10.1152/ajpgi.00341.2012.
  • Clarke MB, Sperandio V. Transcriptional regulation of flhDC by QseBC and σ 28 (FliA) in enterohaemorrhagic Escherichia coli. Mol Microbiol. 2005;57(6):1734–1749. doi:10.1111/j.1365-2958.2005.04792.x.
  • Hughes DT, Clarke MB, Yamamoto K, Rasko DA, Sperandio V, Stebbins CE. The QseC adrenergic signaling cascade in enterohemorrhagic E. coli (EHEC). PLoS Path. 2009;5:e1000553. doi:10.1371/journal.ppat.1000553.
  • Reading NC, Rasko DA, Torres AG, Sperandio V. The two-component system QseEF and the membrane protein QseG link adrenergic and stress sensing to bacterial pathogenesis. PNAS. 2009;106(14):5889–5894. doi:10.1073/pnas.0811409106.
  • Lin L, Zhang J. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases. BMC Immunol. 2017;18(1):2. doi:10.1186/s12865-016-0187-3.
  • Lebeer S, Verhoeven TL, Perea Vélez M, Vanderleyden J, De Keersmaecker SC. Impact of environmental and genetic factors on biofilm formation by the probiotic strain Lactobacillus rhamnosus GG. Appl Environ Microbiol. 2007;73(21):6768–6775. doi:10.1128/AEM.01393-07.
  • Jacobi CA, Grundler S, Hsieh C-J, Frick JS, Adam P, Lamprecht G, Autenrieth IB, Gregor M, Malfertheiner P. Quorum sensing in the probiotic bacterium Escherichia coli Nissle 1917 (Mutaflor)–evidence that furanosyl borate diester (AI-2) is influencing the cytokine expression in the DSS colitis mouse model. Gut Pathog. 2012;4(1):1–10. doi:10.1186/1757-4749-4-8.
  • Sun Z, He X, Brancaccio VF, Yuan J, Riedel CU, Kaufmann GF. Bifidobacteria exhibit LuxS-dependent autoinducer 2 activity and biofilm formation. PLoS One. 2014;9(2):e88260. doi:10.1371/journal.pone.0088260.
  • Iacob S, Iacob DG, Luminos LM. Intestinal microbiota as a host defense mechanism to infectious threats. Front Microbiol. 2018;9:3328. doi:10.3389/fmicb.2018.03328.
  • Chen J, Ma M, Uzal FA, McClane BA. Host cell-induced signaling causes Clostridium perfringens to upregulate production of toxins important for intestinal infections. Gut Microbes. 2014;5(1):96–107. doi:10.4161/gmic.26419.
  • Pinheiro J, Lisboa J, Pombinho R, Carvalho F, Carreaux A, Brito C, Pöntinen A, Korkeala H, dos Santos NMS, Morais-Cabral JH, et al. MouR controls the expression of the Listeria monocytogenes Agr system and mediates virulence. Nucleic Acids Res. 2018;46:9338–9352. doi:10.1093/nar/gky624.
  • Asfour HZ. Anti-quorum sensing natural compounds. J Microsc Ultrastruct. 2018;6(1):1. doi:10.4103/JMAU.JMAU_10_18.
  • Shen Yue. California Institute of Technology. Interkingdom communication of a bacterial mutualist and its mammalian host. 2012. doi:10.7907/56YV-8J33.
  • Moreira CG, Weinshenker D, Sperandio V. QseC mediates Salmonella enterica serovar typhimurium virulence in vitro and in vivo. Infect Immun. 2010;78:914–926. doi:10.1128/IAI.01038-09.
  • Laganenka L, Lee JW, Malfertheiner L, Dieterich CL, Fuchs L, Piel J, von Mering C, Sourjik V, Hardt WD. Chemotaxis and autoinducer-2 signalling mediate colonization and contribute to co-existence of Escherichia coli strains in the murine gut. Nature Microbiol. 2023;8(2):204–217. doi:10.1038/s41564-022-01286-7.
  • Jang Y-J, Choi Y-J, Lee S-H, Jun H-K, Choi B-K. Autoinducer 2 of Fusobacterium nucleatum as a target molecule to inhibit biofilm formation of periodontopathogens. Arch Oral Biol. 2013;58(1):17–27. doi:10.1016/j.archoralbio.2012.04.016.
  • Engevik MA, Danhof HA, Auchtung J, Endres BT, Ruan W, Basseres E, Engevik AC, Wu Q, Nicholson M, Luna RA, et al. Fusobacterium nucleatum adheres to Clostridioides difficile via the RadD adhesin to enhance biofilm formation in intestinal mucus. Gastroenterology. 2021;160(4):1301–14 e8. doi:10.1053/j.gastro.2020.11.034.
  • Otto M. Physical stress and bacterial colonization. FEMS Microbiol Rev. 2014;38(6):1250–1270. doi:10.1111/1574-6976.12088.
  • Kim MK, Ingremeau F, Zhao A, Bassler BL, Stone HA. Local and global consequences of flow on bacterial quorum sensing. Nature Microbiol. 2016;1(1):1. doi:10.1038/nmicrobiol.2015.5.
  • Balcázar JL, Subirats J, Borrego CM. The role of biofilms as environmental reservoirs of antibiotic resistance. Front Microbiol. 2015;6:1216. doi:10.3389/fmicb.2015.01216.
  • Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol. 2016;14(9):563–575. doi:10.1038/nrmicro.2016.94.
  • Lebeaux D, Ghigo JM, Beloin C. Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol Mol Biol Rev. 2014;78(3):510–543. doi:10.1128/MMBR.00013-14.
  • Bertesteanu S, Triaridis S, Stankovic M, Lazar V, Chifiriuc MC, Vlad M, Grigore R. Polymicrobial wound infections: pathophysiology and current therapeutic approaches. Int J Pharm. 2014;463(2):119–126. doi:10.1016/j.ijpharm.2013.12.012.
  • Alam A, Leoni G, Quiros M, Wu H, Desai C, Nishio H, Jones RM, Nusrat A, Neish AS. The microenvironment of injured murine gut elicits a local pro-restitutive microbiota. Nature Microbiol. 2016;1(2):1–8. doi:10.1038/nmicrobiol.2015.21.
  • Swidsinski A, Ladhoff A, Pernthaler A, Swidsinski S, Loening–Baucke V, Ortner M, Weber J, Hoffmann U, Schreiber S, Dietel M. Mucosal flora in inflammatory bowel disease. Gastroenterology. 2002;122(1):44–54. doi:10.1053/gast.2002.30294.
  • Swidsinski A, Weber J, Loening-Baucke V, Hale LP, Lochs H. Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease. J Clin Microbiol. 2005;43(7):3380–3389. doi:10.1128/JCM.43.7.3380-3389.2005.
  • Drewes JL, White JR, Dejea CM, Fathi P, Iyadorai T, Vadivelu J, Roslani AC, Wick EC, Mongodin EF, Loke MF, et al. High-resolution bacterial 16S rRNA gene profile meta-analysis and biofilm status reveal common colorectal cancer consortia. NPJ Biofilms Microbiomes. 2017;3(1):34. doi:10.1038/s41522-017-0040-3.
  • Dejea CM, Fathi P, Craig JM, Boleij A, Taddese R, Geis AL, Wu X, Shields D CE, Hechenbleikner EM, Huso DL. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science. 2018;359(6375):592–597. doi:10.1126/science.aah3648.
  • Tytgat HLP, Nobrega FL, van der Oost J, de Vos WM. Bowel biofilms: tipping points between a healthy and compromised gut? Trends Microbiol. 2019;27(1):17–25. doi:10.1016/j.tim.2018.08.009.
  • Hoarau G, Mukherjee P, Gower-Rousseau C, Hager C, Chandra J, Retuerto M, Neut C, Vermeire S, Clemente J, Colombel J-F, et al. Bacteriome and mycobiome interactions underscore microbial dysbiosis in familial Crohn’s disease. MBio. 2016;7(5):e01250–16. doi:10.1128/mBio.01250-16.
  • Lazar V, Ditu LM, Pircalabioru GG, Gheorghe I, Curutiu C, Holban AM, Picu A, Petcu L, Chifiriuc MC. Aspects of gut microbiota and immune system interactions in infectious diseases, immunopathology, and cancer. Front Immunol. 2018;9:1830. doi:10.3389/fimmu.2018.01830.
  • Ludwig S, Patrice F, Adrien F, Antoine H, Manuela T, David H, James C, Patrick L, Jacques S. Impact of oleic acid (cis-9-octadecenoic acid) on bacterial viability and biofilm production in Staphylococcus aureus. FEMS Microbiol Lett. 2008;149–155.
  • Abdel-Aziz MM, Emam TM, Raafat MM. Hindering of cariogenic Streptococcus mutans biofilm by fatty acid array derived from an endophytic Arthrographis kalrae strain. Biomolecules. 2020;10(5):10. doi:10.3390/biom10050811.
  • El-Mowafy SAS, El Galil MIA, H K. Sodium ascorbate as a quorum sensing inhibitor of Pseudomonas aeruginosa. J Appl Microbiol. 2014;117(5):1388–1399. doi:10.1111/jam.12631.
  • Pandit S, Ravikumar V, Abdel-Haleem AM, Derouiche A, Mokkapati V, Sihlbom C, Mineta K, Gojobori T, Gao X, Westerlund F, et al. Low concentrations of vitamin C reduce the synthesis of extracellular polymers and destabilize bacterial biofilms. Front Microbiol. 2017;8:2599. doi:10.3389/fmicb.2017.02599.
  • Gutiérrez-Barranquero JA, Reen FJ, Mccarthy RR, O’Gara F. Deciphering the role of coumarin as a novel quorum sensing inhibitor suppressing virulence phenotypes in bacterial pathogens. Appl Microbiol Biotechnol. 2015;99:3303–3316. doi:10.1007/s00253-015-6436-1.
  • Proctor CR, Mccarron PA, Ternan NG. Furanone quorum-sensing inhibitors with potential as novel therapeutics against Pseudomonas aeruginosa. J Med Microbiol. 2020;69(2):195–206. doi:10.1099/jmm.0.001144.
  • Singh VK, Kavita K, Prabhakaran R, Jha B. Cis-9-octadecenoic acid from the rhizospheric bacterium Stenotrophomonas maltophilia BJ01 shows quorum quenching and anti-biofilm activities. Biofouling. 2013;29(7):855–867. doi:10.1080/08927014.2013.807914.
  • Nicol M, Alexandre S, Luizet JB, Skogman M, Jouenne T, Salcedo SP, De E. Unsaturated fatty acids affect quorum sensing communication system and inhibit motility and biofilm formation of Acinetobacter baumannii. Int J Mol Sci. 2018;19(1):214. doi:10.3390/ijms19010214.
  • Markus V, Share O, Terali K, Ozer N, Marks RS, Kushmaro A, Golberg K. Anti-quorum sensing activity of stevia extract, stevioside, rebaudioside a and their aglycon steviol. Molecules. 2020;25(22):25. doi:10.3390/molecules25225480.
  • Hou HM, Jiang F, Zhang GL, Wang JY, Zhu YH, Liu XY. Inhibition of Hafnia alvei H4 biofilm formation by the food additive dihydrocoumarin. J Food Protection. 2017;80(5):842–847. doi:10.4315/0362-028X.JFP-16-460.
  • Defoirdt T, Crab R, Wood TK, Sorgeloos P, Verstraete W, Bossier P. Quorum sensing-disrupting Brominated Furanones protect the gnotobiotic brine shrimp artemia franciscana from pathogenic Vibrio harveyi , Vibrio campbellii , and Vibrio parahaemolyticus Isolates. Appl Environ Microbiol. 2006;72(9):6419–6423. doi:10.1128/AEM.00753-06.
  • Rodriguez-Lopez P, Barrenengoa AE, Pascual-Saez S, Cabo ML. Efficacy of synthetic furanones on Listeria monocytogenes biofilm formation. Foods. 2019;8(12):647. doi:10.3390/foods8120647.
  • Ben Amara H, Song HY, Ryu E, Park JS, Schwarz F, Kim BM, Choi BK, Koo KT. Effects of quorum-sensing inhibition on experimental periodontitis induced by mixed infection in mice. Eur J Oral Sci. 2018;126(6):449–457. doi:10.1111/eos.12570.
  • Almasoud A, Hettiarachchy N, Rayaprolu S, Babu D, Kwon YM, Mauromoustakos A. Inhibitory effects of lactic and malic organic acids on autoinducer type 2 (AI-2) quorum sensing of Escherichia coli O157: H7 and Salmonella typhimurium. LWT-Food Sci Technol. 2016;O157:560–564. doi:10.1016/j.lwt.2015.11.013.
  • Soni KA, Jesudhasan P, Cepeda M, Widmer K, Jayaprakasha GK, Patil BS, Hume ME, Pillai SD. Identification of ground beef–derived fatty acid Inhibitors of autoinducer-2–Based cell signaling. J Food Protection. 2008;71(1):134–138. doi:10.4315/0362-028X-71.1.134.
  • Shivaprasad D, Taneja NK, Lakra A, Sachdev D. In vitro and in situ abrogation of biofilm formation in E. coli by vitamin C through ROS generation, disruption of quorum sensing and exopolysaccharide production. Food Chem. 2020;341:341. doi:10.1016/j.foodchem.2020.128171.
  • Ellermann M, Jimenez AG, Pifer R, Ruiz N, Sperandio V, Skaar E, McFall-Ngai MJ. The canonical long-chain fatty acid sensing machinery processes arachidonic acid to inhibit virulence in enterohemorrhagic Escherichia coli. mBio. 2021;12(1):12. doi:10.1128/mBio.03247-20.
  • An SQ, Murtagh J, Twomey KB, Gupta MK, Tang JL, Ingram R, Valvano MA, Tang J-L. Modulation of antibiotic sensitivity and biofilm formation in Pseudomonas aeruginosa by interspecies signal analogues. Nat Commun. 2019;10(1):10. doi:10.1038/s41467-019-10271-4.
  • Kim HS, Cha E, Ham SY, Park JH, Nam S, Kwon H, Byun Y, Park HD. Linoleic acid inhibits Pseudomonas aeruginosa biofilm formation by activating diffusible signal factor-mediated quorum sensing. Biotechnol Bioeng. 2021;118(1):82–93. doi:10.1002/bit.27552.
  • Mao N, Cubillos-Ruiz A, Cameron DE, Collins JJ. Probiotic strains detect and suppress cholera in mice. Sci Transl Med. 2018;10(445):10. doi:10.1126/scitranslmed.aao2586.
  • Holowko MB, Wang H, Jayaraman P, Poh CL. Biosensing Vibrio cholerae with genetically engineered Escherichia coli. ACS Synth Biol. 2016;5(11):1275–1283. doi:10.1021/acssynbio.6b00079.
  • Sedlmayer F, Hell D, Muller M, Auslander D, Fussenegger M. Designer cells programming quorum-sensing interference with microbes. Nat Commun. 2018;9(1):1822. doi:10.1038/s41467-018-04223-7.
  • Falà AK, Álvarez-Ordóñez A, Filloux A, Gahan CG, Cotter PD. Quorum sensing in human gut and food microbiomes: Significance and potential for therapeutic targeting. Front Microbiol. 2022;13:1002185. doi:10.3389/fmicb.2022.1002185.
  • Xie Y, Chen J, Wang B, Peng AY, Mao ZW, Xia W. Inhibition of quorum-sensing Regulator from Pseudomonas aeruginosa using a flavone derivative. Molecules. 2022;27(8):27. doi:10.3390/molecules27082439.
  • Ananthakrishnan AN, Khalili H, Konijeti GG, Higuchi LM, De Silva P, Korzenik JR, Fuchs CS, Willett WC, Richter JM, Chan AT. A prospective study of long-term intake of dietary fiber and risk of Crohn’s disease and Ulcerative colitis. Gastroenterology. 2013;145(5):970–977. doi:10.1053/j.gastro.2013.07.050.
  • Brown MM, Todd D, Cech N, Horswill A. 525 novel peptide from commensal Staphylococcus simulans blocks MRSA quorum sensing and protects host skin from damage. J Invest Dermatol. 2019;139(5):139. doi:10.1016/j.jid.2019.03.601.
  • Wu S, Liu J, Liu C, Yang A, Qiao J. Quorum sensing for population-level control of bacteria and potential therapeutic applications. Cell Mol Life Sci. 2020;77(7):1319–1343. doi:10.1007/s00018-019-03326-8.
  • Dang Z, Gao M, Wang L, Wu J, Guo Y, Zhu Z, Huang H, Kang G. Synthetic bacterial therapies for intestinal diseases based on quorum-sensing circuits. Biotechnol Adv. 2023;65:108142. doi:10.1016/j.biotechadv.2023.108142.
  • Contreras-Ramos M, Mansell TJ. Leveraging quorum sensing to manipulate microbial dynamics. Curr Opin Biomed Eng. 2021;19:100306. doi:10.1016/j.cobme.2021.100306.
  • Wu S, Feng J, Liu C, Wu H, Qiu Z, Ge J, Sun S, Hong X, Li Y, Wang X, et al. Machine learning aided construction of the quorum sensing communication network for human gut microbiota. Nat Commun. 2022;13(1):3079. doi:10.1038/s41467-022-30741-6.
  • Wu S, Yang S, Wang M, Song N, Feng J, Wu H, Yang A, Liu C, Li Y, Guo F, et al. Quorum sensing-based interactions among drugs, microbes, and diseases. Sci China Life Sci. 2023;66(1):137–151.
  • Dumitru R, Navarathna DH, Semighini CP, Elowsky CG, Dumitru RV, Dignard D, Whiteway M, Atkin AL, Nickerson KW. In vivo and in vitro anaerobic mating in Candida albicans. Eukaryot Cell. 2007;6(3):465–472. doi:10.1128/EC.00316-06.
  • Hornby JM, Jensen EC, Lisec AD, Tasto JJ, Jahnke B, Shoemaker R, Dussault P, Nickerson KW. Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl Environ Microbiol. 2001;67(7):2982–2992. doi:10.1128/AEM.67.7.2982-2992.2001.
  • Ramage G, Saville SP, Wickes BL, López-Ribot JL. Inhibition of Candida albicans biofilm formation by farnesol, a quorum-sensing molecule. Appl Environ Microbiol. 2002;68(11):5459–5463. doi:10.1128/AEM.68.11.5459-5463.2002.
  • Sharma M, Prasad R. The quorum-sensing molecule farnesol is a modulator of drug efflux mediated by ABC multidrug transporters and synergizes with drugs in Candida albicans. Antimicrob Agents Chemother. 2011;55(10):4834–4843. doi:10.1128/AAC.00344-11.
  • Shirtliff ME, Krom BP, Meijering RA, Peters BM, Zhu J, Scheper MA, Harris ML, Jabra-Rizk MA. Farnesol-induced apoptosis in Candida albicans. Antimicrob Agents Chemother. 2009;53(6):2392–2401. doi:10.1128/AAC.01551-08.
  • Cugini C, Calfee MW, Farrow JM, Morales D3rd, Pesci EC, Hogan DA, Hogan DA. Farnesol, a common sesquiterpene, inhibits PQS production in Pseudomonas aeruginosa. Mol Microbiol. 2007;65(4):896–906. doi:10.1111/j.1365-2958.2007.05840.x.
  • Zawrotniak M, Wojtalik K, Rapala-Kozik M. Farnesol, a quorum-sensing molecule of Candida Albicans triggers the release of neutrophil extracellular traps. Cells. 2019;8(12):1611. doi:10.3390/cells8121611.
  • LaSarre B, Federle MJ. Exploiting quorum sensing to confuse bacterial pathogens. Microbiol Mol Biol Rev. 2013;77(1):73–111. doi:10.1128/MMBR.00046-12.
  • Hawver LA, Jung SA, Ng WL, Shen A. Specificity and complexity in bacterial quorum-sensing systems. FEMS Microbiol Rev. 2016;40(5):738–752. doi:10.1093/femsre/fuw014.